「シナプス刈り込み」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
編集の要約なし
90行目: 90行目:


'''P/Q型カルシウムチャネル'''<br>
'''P/Q型カルシウムチャネル'''<br>
 [[P/Q型カルシウムチャネル]]は、プルキンエ細胞の主要な[[電位依存性カルシウムチャネル]]である。P/Q型[[カルシウムチャネル]]は、登上線維間のシナプス入力量に差を生じさせ、1本の登上線維の支配を強化し、その「勝者」のみが樹状突起へ進展してシナプスを形成できるようにし、生後7日頃から11日頃に弱い登上線維シナプスを除去する役割を担っている<ref name=ref16 /> <ref name=ref36><pubmed>14973254</pubmed></ref>。さらに、P/Q VDCCは後期過程においてもシナプス刈り込みに関与しており、その活性化により[[最初期遺伝子]]activity regulated cytoskeleton associated protein(Arc/Arg3.1)の発現を増加させ、シナプス刈り込みを促進している<ref name=ref37><pubmed>23791196</pubmed></ref>。
 [[P/Q型カルシウムチャネル]]は、プルキンエ細胞の主要な[[電位依存性カルシウムチャネル]]である。P/Q型[[カルシウムチャネル]]は、登上線維間のシナプス入力量に差を生じさせ、1本の登上線維の支配を強化し、その「勝者」のみが樹状突起へ進展してシナプスを形成できるようにし、生後7日頃から11日頃に弱い登上線維シナプスを除去する役割を担っている<ref name=ref16 /> <ref name=ref36><pubmed>14973254</pubmed></ref>。さらに、P/Q型カルシウムチャネルは後期過程においてもシナプス刈り込みに関与しており、その活性化により[[最初期遺伝子]][[activity regulated cytoskeleton associated protein]]([[Arc]]/[[Arg3.1]])の発現を増加させ、シナプス刈り込みを促進している<ref name=ref37><pubmed>23791196</pubmed></ref>。


'''GluRδ2、Cbln1'''<br>
'''GluRδ2、Cbln1'''<br>
 [[イオンチャネル]]型グルタミン酸受容体の構造を持つGlutamate receptor delta 2<ref name=ref31 />とC1qファミリー分子であるCerebellin-1<ref name=ref38><pubmed>16234806</pubmed></ref>は、平行線維-プルキンエ細胞シナプスの形成と維持に必須の分子であることが明らかにされた<ref name=ref38 /> <ref name=ref39><pubmed>9391016</pubmed></ref>。また、GluD2とCbln1はneurexinsを介したその相互作用により平行線維-プルキンエ細胞シナプスの形成と維持に必須の分子であることが明らかにされた<ref name=ref39 /> <ref name=ref40><pubmed>20395510</pubmed></ref> <ref name=ref41><pubmed>7736576</pubmed></ref> <ref name=ref42><pubmed>20537373</pubmed></ref>。平行線維シナプスは、プルキンエ細胞上の支配領域をめぐって登上線維シナプスと競合していると考えられており、GluRδ2とCbln1は平行線維シナプスを強化することで、登上線維シナプスが遠位樹状突起へ進展することを制限していると考えられている<ref name=ref41 />。
 [[イオンチャネル型グルタミン酸受容体]]の構造を持つ[[Glutamate receptor delta 2]]([[GluD2]])<ref name=ref31 />と[[C1q]]ファミリー分子である[[Cerebellin-1]]<ref name=ref38><pubmed>16234806</pubmed></ref>は、平行線維-プルキンエ細胞シナプスの形成と維持に必須の分子であることが明らかにされた<ref name=ref38 /> <ref name=ref39><pubmed>9391016</pubmed></ref>。


'''Semaphorin7A、Semaphorin3A'''<br>
 また、GluD2とCbln1はニューレキシンを介したその相互作用により平行線維-プルキンエ細胞シナプスの形成と維持に必須の分子であることが明らかにされた<ref name=ref39 /> <ref name=ref40><pubmed>20395510</pubmed></ref> <ref name=ref41><pubmed>7736576</pubmed></ref> <ref name=ref42><pubmed>20537373</pubmed></ref>。
 シナプス刈り込みにはシナプス後部の神経細胞の活動やシグナル伝達分子が重要であることがわかっていたことから、シナプス後部神経細胞からシナプス前部へと伝えられる逆行性シグナル分子が想定されてきた。最近の研究により、Semaphorin7AとSemaphorin3Aがこの役割を担うことが示された<ref name=ref43><pubmed>   24831527</pubmed></ref>。Semaphorin7Aは生後15日以降におこる後期シナプス除去過程においてmGluR1の下流で働き、弱い登上線維シナプスを除去する。一方、Semaphorin3Aは生後8日目以降に登上線維シナプスを強化および維持する。
 
 平行線維シナプスは、プルキンエ細胞上の支配領域をめぐって登上線維シナプスと競合していると考えられており、GluD2とCbln1は平行線維シナプスを強化することで、登上線維シナプスが遠位樹状突起へ進展することを制限していると考えられている<ref name=ref41 />。
 
'''セマフォリン7A、セマフォリン3A'''<br>
 シナプス刈り込みにはシナプス後部の神経細胞の活動やシグナル伝達分子が重要であることがわかっていたことから、シナプス後部神経細胞からシナプス前部へと伝えられる[[逆行性シグナル分子]]が想定されてきた。
 
 最近の研究により、[[セマフォリン7A]]と[[セマフォリン3A]]がこの役割を担うことが示された<ref name=ref43><pubmed>24831527</pubmed></ref>。セマフォリン7Aは生後15日以降におこる後期シナプス除去過程においてmGluR1の下流で働き、弱い登上線維シナプスを除去する。一方、セマフォリン3Aは生後8日目以降に登上線維シナプスを強化および維持する。


'''C1ql1'''<br>
'''C1ql1'''<br>
 Cbln1の関連分子であるC1q-like protein 1は下オリーブ核細胞に選択的に発現し、登上線維-プルキンエ細胞シナプスで機能することで登上線維シナプスの選択的強化や除去に関わることが報告されている<ref name=ref44><pubmed>25611509</pubmed></ref>。さらに、プルキンエ細胞で発現するbrain-specific angiogenesis inhibitor 3(BAI3)が下オリーブ核からのC1ql1を受け取り、登上線維シナプスの強化や除去を制御することも明らかとなっている。
 Cbln1の関連分子である[[C1q-like protein 1]]([[Clql1]])は下オリーブ核細胞に選択的に発現し、登上線維-プルキンエ細胞シナプスで機能することで登上線維シナプスの選択的強化や除去に関わることが報告されている<ref name=ref44><pubmed>25611509</pubmed></ref>。さらに、プルキンエ細胞で発現する[[brain-specific angiogenesis inhibitor 3]]([[BAI3]])が下オリーブ核からのC1ql1を受け取り、登上線維シナプスの強化や除去を制御することも明らかとなっている。


'''NMDA型グルタミン酸受容体'''<br>
'''NMDA型グルタミン酸受容体'''<br>
 NMDA型グルタミン酸受容体は、シナプス刈り込みが起こる時期にプルキンエ細胞には存在しないが、苔状線維-顆粒細胞シナプスに豊富に存在している。苔状線維からの興奮性入力を顆粒細胞の軸索である平行線維を通じて、プルキンエ細胞に伝え、mGluR1-Gαq-PLCβ4-PKCγのカスケードを駆動することにより、弱いプルキンエ細胞のシナプス除去を促進すると考えられている<ref name=ref45><pubmed>10864953</pubmed></ref> <ref name=ref46><pubmed>1352066</pubmed></ref>。
 [[NMDA型グルタミン酸受容体]]は、シナプス刈り込みが起こる時期にプルキンエ細胞には存在しないが、苔状線維-顆粒細胞シナプスに豊富に存在している。苔状線維からの興奮性入力を顆粒細胞の軸索である平行線維を通じて、プルキンエ細胞に伝え、mGluR1-Gαq-PLCβ4-PKCγのカスケードを駆動することにより、弱いプルキンエ細胞のシナプス除去を促進すると考えられている<ref name=ref45><pubmed>10864953</pubmed></ref> <ref name=ref46><pubmed>1352066</pubmed></ref>。


'''その他'''<br>
'''その他'''<br>
 その他、インシュリン様成長因子1(IGF1)<ref name=ref47><pubmed>12581172</pubmed></ref>、脳由来神経栄養因子受容体(TrkB)<ref name=ref48><pubmed>17940915</pubmed></ref> <ref name=ref49><pubmed>17463037</pubmed></ref>、細胞内の輸送タンパクのミオシンVa<ref name=ref50><pubmed>   17506494</pubmed></ref>、アストロサイト特異的なグルタミン酸トランスポーターのGLAST22)、脳で特異的に発現する受容体様膜蛋自質BSRP(Sez6)<ref name=ref51><pubmed>16814779</pubmed></ref>の関与が報告されているが、機能する場所やそのシグナリングの実体はよく分かっていない。
 その他、[[インシュリン様成長因子1]]([[IGF1]])<ref name=ref47><pubmed>12581172</pubmed></ref>、[[脳由来神経栄養因子受容体]]([[TrkB]])<ref name=ref48><pubmed>17940915</pubmed></ref> <ref name=ref49><pubmed>17463037</pubmed></ref>、細胞内の輸送タンパクの[[ミオシンVa]]<ref name=ref50><pubmed>17506494</pubmed></ref>、アストロサイト特異的なグルタミン酸トランスポーターの[[GLAST22]]、脳で特異的に発現する受容体様膜タンパク質[[BSRP]]([[Sez6]])<ref name=ref51><pubmed>16814779</pubmed></ref>の関与が報告されているが、機能する場所やそのシグナリングの実体はよく分かっていない。


====神経筋接合部のシナプス====
====神経筋接合部のシナプス====
 ペプチド結合加水分解酵素プロテアーゼ<ref name=ref52><pubmed>6379504</pubmed></ref>、グリア由来神経栄養因子GDNF<ref name=ref53><pubmed>9497292</pubmed></ref>、細胞外シグナル分子の[[リーリン]]<ref name=ref54><pubmed>12893944</pubmed></ref>の関与が報告されている。プロテアーゼや[[GDNF]]は、シナプス後部細胞である筋細胞からシナプス前部細胞である[[運動ニューロン]]の神経線維シナプスに働きかける逆行性シグナル分子として機能すると考えられている。
 ペプチド結合加水分解酵素[[プロテアーゼ]]<ref name=ref52><pubmed>6379504</pubmed></ref>、[[グリア由来神経栄養因子]][[GDNF]]<ref name=ref53><pubmed>9497292</pubmed></ref>、細胞外シグナル分子の[[リーリン]]<ref name=ref54><pubmed>12893944</pubmed></ref>の関与が報告されている。プロテアーゼやGDNFは、シナプス後部細胞である筋細胞からシナプス前部細胞である[[運動ニューロン]]の神経線維シナプスに働きかける逆行性シグナル分子として機能すると考えられている。


====網膜-外側膝状体シナプス====
====網膜-外側膝状体シナプス====
 補体のC1qと C3の関与が報告されている<ref name=ref55><pubmed>18083105</pubmed></ref>。これらの分子は、おそらくミクログリアを介して機能し、弱いシナプスを除去すると考えられている。また、トランスフォーミング増殖因子βによるシグナルが、網膜神経節細胞やその軸索でのC1qの発現を増加させ、シナプス刈り込みを促進する可能性が示されている<ref name=ref56><pubmed>24162655</pubmed></ref>。さらに、アストロサイトに存在し、食作用に関係した受容体分子MEGF10とMERTKが、シナプス刈り込みに必要であることが報告された<ref name=ref25 />。 また、[[レット症候群]]の原因遺伝子であるMECP2の[[ノックアウトマウス]]では、視覚経験依存的なシナプス刈り込みが選択的に阻害されていることが報告されている<ref name=ref57><pubmed>21482354</pubmed></ref>。
 [[wikipedia:ja:補体|補体]]の[[C1q]]と[[C3]]の関与が報告されている<ref name=ref55><pubmed>18083105</pubmed></ref>。これらの分子は、おそらくミクログリアを介して機能し、弱いシナプスを除去すると考えられている。また、[[トランスフォーミング増殖因子β]]([[TGFβ]])によるシグナルが、網膜神経節細胞やその軸索でのC1qの発現を増加させ、シナプス刈り込みを促進する可能性が示されている<ref name=ref56><pubmed>24162655</pubmed></ref>。さらに、アストロサイトに存在し、食作用に関係した受容体分子[[MEGF10]]と[[MERTK]]が、シナプス刈り込みに必要であることが報告された<ref name=ref25 />。 また、[[レット症候群]]の原因遺伝子である[[MECP2]]のノックアウトマウスでは、視覚経験依存的なシナプス刈り込みが選択的に阻害されていることが報告されている<ref name=ref57><pubmed>21482354</pubmed></ref>。


====台形体内側核-外側上オリーブ核シナプス====
====台形体内側核-外側上オリーブ核シナプス====
 グルタミン酸トランスポーターであるvGluT3が関与することが報告されている<ref name=ref58><pubmed>20081852</pubmed></ref>。台形体内側核由来のシナプスであるGABA/glycinergicシナプスが特定の時期にグルタミン酸も放出することがこのシナプス刈り込みに重要であると考えられている。
 グルタミン酸トランスポーターである[[vGluT3]]が関与することが報告されている<ref name=ref58><pubmed>20081852</pubmed></ref>。台形体内側核由来のシナプスであるGABA/グリシン性シナプスが特定の時期にグルタミン酸も放出することがこのシナプス刈り込みに重要であると考えられている。


====大脳皮質内抑制性シナプス====
====大脳皮質内抑制性シナプス====

案内メニュー