「追従眼球運動」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
編集の要約なし
2行目: 2行目:
<font size="+1">[http://researchmap.jp/kenichiromiura 三浦 健一郎]、[http://researchmap.jp/kenjikawano 河野 憲二]</font><br>
<font size="+1">[http://researchmap.jp/kenichiromiura 三浦 健一郎]、[http://researchmap.jp/kenjikawano 河野 憲二]</font><br>
''京都大学 大学院医学研究科''<br>
''京都大学 大学院医学研究科''<br>
DOI XXXX/XXXX 原稿受付日:2012年5月24日 原稿完成日:2013年月日<br>
DOI:<selfdoi /> 原稿受付日:2012年5月24日 原稿完成日:2016年5月25日<br>
担当編集委員:[http://researchmap.jp/keijitanaka 田中 啓治](独立行政法人理化学研究所 脳科学総合研究センター)<br>
担当編集委員:[http://researchmap.jp/keijitanaka 田中 啓治](独立行政法人理化学研究所 脳科学総合研究センター)<br>
</div>
</div>
11行目: 11行目:


{{box|text=
{{box|text=
 追従眼球運動とは眼前のテクスチャパターンが突然動く時に誘発される反射的な[[眼球運動]]である。視覚刺激が動き始めてから眼の動きが起こるまでの潜時が非常に短いことがその特徴として挙げられる。[[大脳皮質]][[MST野]]、[[脳幹]]の[[背外側橋核]]、脳幹の[[視索核]]、[[小脳]]の[[腹側傍片葉]]を含み、最終的に脳幹の[[wikipedia:ja:外眼筋|外眼筋]][[運動神経]]核に到る経路が追従眼球運動の発現に関わると考えられている。  
 追従眼球運動とは眼前の広視野パターンが突然動く時に誘発される反射的な[[眼球運動]]である。視覚刺激が動き始めてから眼の動きが起こるまでの潜時が非常に短いことがその特徴として挙げられる。[[大脳皮質]][[MST野]]、[[脳幹]]の[[背外側橋核]]、脳幹の[[視索核]]、[[小脳]]の[[腹側傍片葉]]を含み、最終的に脳幹の[[wikipedia:ja:外眼筋|外眼筋]][[運動神経]]核に到る経路が追従眼球運動の発現に関わると考えられている。  
}}
}}


== 追従眼球運動とは ==
== 追従眼球運動とは ==


 眼前のテクスチャパターンが突然動く時に誘発される反射的な眼球運動である。[[視覚]]刺激が動き始めてから眼の動きが起こるまでの[[反応時間|潜時]]が非常に短いことがその特徴として挙げられる([[wikipedia:ja:サル|サル]]で&lt;60ms、[[wikipedia:ja:ヒト|ヒト]]で&lt;80ms)<ref><pubmed>3794772</pubmed></ref> <ref><pubmed>2278939</pubmed></ref> <ref name="refkawano1999"><pubmed>10448153</pubmed></ref>。
 眼前の広視野パターンが突然動く時に誘発される反射的な眼球運動である。[[視覚]]刺激が動き始めてから眼の動きが起こるまでの[[反応時間|潜時]]が非常に短いことがその特徴として挙げられる([[wikipedia:ja:サル|サル]]で&lt;60ms、[[wikipedia:ja:ヒト|ヒト]]で&lt;80ms)<ref><pubmed>3794772</pubmed></ref> <ref><pubmed>2278939</pubmed></ref> <ref name="refkawano1999"><pubmed>10448153</pubmed></ref>。


==機能==
==機能==
23行目: 23行目:
== 視覚要因 ==
== 視覚要因 ==


 観察者が注視している平面上を動く視覚刺激に対しては良く反応するが、[[両眼視差]]をつけることで、それよりも前あるいは後ろの平面上の刺激をシミュレートすると、その刺激の動きに対する反応は注視平面から離れるにつれて急激に小さくなる。眼前に広がる3次元空間の中で、観察者がその時に注視している平面上の対象の[[網膜]]像を安定化するように働いていると考えられる<ref><pubmed> 9753150 </pubmed></ref>。  
 観察者が注視している平面上を動く視覚刺激に対しては良く反応するが、[[両眼視差]]をつけることで、それよりも前あるいは後ろの平面上の刺激をシミュレートすると、その刺激の動きによって起こる眼の動きの振幅は注視平面から離れるにつれて急激に小さくなる。眼前に広がる3次元空間の中で、観察者がその時に注視している平面上の対象の[[網膜]]像を安定化するように働いていると考えられる<ref><pubmed> 9753150 </pubmed></ref>。  


 追従眼球運動反応は視覚刺激のサイズに依存する。広い視野を覆う視覚刺激は追従眼球運動の有効刺激であるが、視野全体を覆うテクスチャパターンは最適刺激ではない。横に細長い帯状の刺激(高さ1度、幅45度)を用い、それを画面上に間欠的に配置して調べると、帯状刺激の本数が多くなるにつれて反応が増大するが数本配置すると飽和する。さらに、視野全体を覆う刺激に対する反応は、たった一本の帯状刺激で起こる反応よりも小さい。このサイズの影響は、追従眼球運動の視覚情報処理に、[[正規化]](divisive normalization)や[[周辺抑制]](surround inhibitory mechanism)といった[[wikipedia:ja:非線形|非線形]]機構が関わることを示唆している<ref><pubmed> 18603279 </pubmed></ref>。  
 追従眼球運動反応は視覚刺激のサイズに依存する。広い視野を覆う視覚刺激は追従眼球運動の有効刺激であるが、視野全体を覆うテクスチャパターンは最適刺激ではない。横に細長い帯状の刺激(高さ1度、幅45度)を用い、それを画面上に間欠的に配置して調べると、帯状刺激の本数が多くなるにつれて刺激の動きに対する眼の動きの振幅は大きくなるが、数本配置すると飽和する。さらに、視野全体を覆う刺激に対する反応は、たった一本の帯状刺激で起こる反応よりも小さい。これらのサイズの影響は、追従眼球運動の視覚情報処理に、[[正規化]](divisive normalization)や[[周辺抑制]](surround inhibitory mechanism)といった機構が関わることを示唆している<ref><pubmed> 18603279 </pubmed></ref>。  


 追従眼球運動は視覚刺激の[[wikipedia:ja:空間周波数|空間周波数]]と[[wikipedia:ja:時間周波数|時間周波数]]に依存する<ref><pubmed> 21421006 </pubmed></ref>。様々な空間周波数の[[wikipedia:ja:正弦波|正弦波]]運動縞に対する反応からその周波数特性を調べると、刺激の時間周波数が25Hzの時には平均0.2-0.3 cycles/度の刺激が最適であることが報告されている。また、高い時間周波数の正弦波運動縞に対して早く大きく応答する。サルでは20-40Hzの刺激で眼球運動濳時が最も短くなる。ヒトでは16-20 Hz程度が最適と報告されている。  
 追従眼球運動は視覚刺激の[[wikipedia:ja:空間周波数|空間周波数]]と[[wikipedia:ja:時間周波数|時間周波数]]に依存する<ref><pubmed> 21421006 </pubmed></ref>。様々な空間周波数の[[wikipedia:ja:正弦波|正弦波]]運動縞に対する反応からその周波数特性を調べると、刺激の時間周波数が25Hzの時には平均0.2-0.3 cycles/度の刺激が最適であることが報告されている。また、高い時間周波数の正弦波運動縞に対して早く大きく応答する。サルでは20-40Hzの刺激で眼球運動濳時が最も短くなる。ヒトでは16-20 Hz程度が最適と報告されている。  


 追従眼球運動は一次運動に対する応答である。一次運動とは輝度の時空間的分布で定義される視覚刺激の動きであり、視覚像の輝度の時空間スペクトルからその運動を推定することができる。実現の段階においては網膜像の時空間フィルタリングに基づく空間周波数成分の運動を検出して全体の運動を決める検出機構による。一次運動の検出機構のホールマークとしていくつかの[[運動錯視]]が知られている。例えば、パターンをある方向に移動させると同時にコントラストを反転させると、移動と反対方向への動きが知覚される。その運動錯視は逆転運動(reversed phi)と呼ばれる。この運動錯視は空間周波数成分の動きから像の運動方向を決める運動検出機構があることを示している。その運動刺激に対する追従眼球運動は刺激を移動させた方向と反対の方向に起こる<ref><pubmed> 12169427 </pubmed></ref>。  
 追従眼球運動は一次運動に対する応答である。一次運動とは輝度の時空間的分布で定義される視覚刺激の動きであり、視覚像の輝度の時空間スペクトルからその運動を推定することができる。実現の段階においては網膜像の時空間フィルタリングに基づく空間周波数成分の運動を検出して全体の運動を決める検出機構による。一次運動の検出機構の特徴としていくつかの[[運動錯視]]が知られている。例えば、パターンをある方向に移動させると同時にコントラストを反転させると、移動と反対方向への動きが知覚される。その運動錯視は逆転運動(reversed phi)と呼ばれる。この運動錯視は空間周波数成分の動きから像の運動方向を決める運動検出機構があることを示している。その運動刺激に対する追従眼球運動は刺激を移動させた方向と反対の方向に起こる<ref><pubmed> 12169427 </pubmed></ref>。  


 また、矩形波縞からその基本周波数の正弦波成分を除いて構成される縞刺激(MF: [[wikipedia:missing fundamental|missing fundamental]])をその周期の1/4だけステップさせると刺激を動かした方向と逆方向の動きが知覚される。矩形波は基本波と振幅が順次小さくなってゆく奇数高調波の和で構成されるので、MF刺激は第3高調波を最大振幅とする奇数調波の和となる。パターンを1/4周期ステップさせると、第3高調波成分は1/4だけ反対方向に動くことになる。MF縞の仮現運動刺激に対する追従眼球運動はパターンを動かした方向と逆方向に起こる<ref><pubmed> 15894346 </pubmed></ref> <ref><pubmed> 16356529 </pubmed></ref>。  
 また、矩形波縞からその基本周波数の正弦波成分を除いて構成される縞刺激(MF: [[wikipedia:missing fundamental|missing fundamental]])をその周期の1/4だけステップさせると刺激を動かした方向と逆方向の動きが知覚される。矩形波は基本波と振幅が順次小さくなってゆく奇数高調波の和で構成されるので、MF刺激は第3高調波を最大振幅とする奇数調波の和となる。パターンを1/4周期ステップさせると、第3高調波成分は1/4だけ反対方向に動くことになる。MF縞の仮現運動刺激に対する追従眼球運動はパターンを動かした方向と逆方向に起こる<ref><pubmed> 15894346 </pubmed></ref> <ref><pubmed> 16356529 </pubmed></ref>。  


 これらの運動錯視刺激に対する追従眼球運動反応は一次運動の検出機構が運動発現の基盤となっていることを示している。
 これらの運動錯視刺激に対する追従眼球運動反応は一次運動の検出機構が運動発現の基盤となっていることを示している。
37行目: 37行目:
== 神経機構  ==
== 神経機構  ==


 サルの[[大脳皮質]][[MST野|MST (Medial Superior Temporal)野]]、[[脳幹]]の[[背外側橋核]]、脳幹の[[視索核]]、[[小脳]]の[[腹側傍片葉]]のニューロン活動が調べられている。これらの脳部位を含み、最終的に脳幹の[[wikipedia:ja:外眼筋|外眼筋]][[運動神経核]]に到る経路が追従眼球運動の発現に関わると考えられている。この神経経路に沿って行われる視覚情報から運動指令信号への変換について、共通の視覚刺激(ランダムドットパターン)、共通の解析法(網膜誤差からの神経活動の再構成および眼球運動からの再構成)を用いた研究が系統的に行われてきた<ref name="refkawano1999" />。  
 追従眼球運動に関連して、サルの[[大脳皮質]][[MST野|MST(Medial Superior Temporal)野]]、[[脳幹]]の[[背外側橋核]]、脳幹の[[視索核]]、[[小脳]]の[[腹側傍片葉]]のニューロン活動が調べられている。これらの脳部位を含み、最終的に脳幹の[[wikipedia:ja:外眼筋|外眼筋]][[運動神経核]]に到る経路が追従眼球運動の発現に関わると考えられている。この神経経路に沿って行われる視覚情報から運動指令信号への変換について、共通の視覚刺激(ランダムドットパターン)、共通の解析法(網膜誤差からの神経活動の再構成および眼球運動からの再構成)を用いた研究が系統的に行われてきた<ref name="refkawano1999" />。  


=== 大脳皮質MST野   ===
=== 大脳皮質MST野   ===
49行目: 49行目:
=== 視索核 ===
=== 視索核 ===


 脳幹の視索核にも追従眼球運動に先行して活動するニューロンがある<ref><pubmed> 10789943 </pubmed></ref>。それらのニューロンの最適方向は同側であり、遅い刺激(≤ 20 度/秒)を好むものが多い。片側の視索核を薬物で不活性化すると、対側方向と上下方向への追従眼球運動への影響は小さいが、同側への追従眼球運動の速度が約50%減弱する。追従眼球運動時の視索核ニューロンの発火頻度は、眼球運動よりも、網膜誤差から良く再構成できる。しかし、単一のモデルを用いて反応が再構成できる視覚刺激のスピードの範囲は限られている。視索核からは背外側橋核や同側の下オリーブ核に投射があることが知られている。
 脳幹の視索核にも追従眼球運動に先行して活動するニューロンがある<ref><pubmed> 10789943 </pubmed></ref>。それらのニューロンの最適方向は同側であり、遅い刺激(≤ 20 度/秒)を好むものが多い。片側の視索核を薬物で不活性化すると、対側方向と上下方向への追従眼球運動への影響は小さいが、同側への追従眼球運動の速度が約50%減弱する。追従眼球運動時の視索核ニューロンの発火頻度は、眼球運動よりも、網膜誤差(網膜像の位置、速度、加速度)から良く再構成できる。しかし、単一のモデルを用いて反応が再構成できる視覚刺激のスピードの範囲は限られている。視索核からは背外側橋核や同側の下オリーブ核に投射があることが知られている。


=== 小脳腹側傍片葉 ===
=== 小脳腹側傍片葉 ===


 小脳の腹側傍片葉では[[プルキンエ細胞]]の活動が調べられている。プルキンエ細胞の単純[[スパイク]]の最適方向は同側か下方向である。単純スパイクの発火頻度は追従眼球運動の速度、加速度と良く相関する。単純スパイクの時間経過は眼球運動の位置、速度、加速度を用いた逆ダイナミクス表現によって再構成できる<ref><pubmed> 8361536 </pubmed></ref> <ref><pubmed> 9705471 </pubmed></ref>。このことから小脳は追従眼球運動の運動指令の構成に重要な役割を果たすと考えられている。複雑スパイクの最適方向は対側か上方向である。複雑スパイクの時間経過についても、網膜誤差よりも、眼球運動の位置、速度、加速度から良く再構成できる<ref><pubmed> 9705472 </pubmed></ref> 。しかし、単純スパイクに比べて網膜誤差との相関が高いことが指摘されている。複雑スパイクは視索核から[[下オリーブ核]]を介する小脳への入力によるものと考えられ、それによって運ばれる網膜誤差の信号と単純スパイクに表現される信号との間の長期的相互作用が追従眼球運動の適応に貢献する可能性が指摘されている<ref><pubmed> 11877526 </pubmed></ref>。  
 小脳の腹側傍片葉の[[プルキンエ細胞]]の単純[[スパイク]]の最適方向は同側か下方向である。単純スパイクの発火頻度は、網膜誤差ではなく、追従眼球運動の速度、加速度と良く相関する。単純スパイクの時間経過は眼球運動の位置、速度、加速度を用いた逆ダイナミクス表現によって再構成できる<ref><pubmed> 8361536 </pubmed></ref> <ref><pubmed> 9705471 </pubmed></ref>。このことから小脳は追従眼球運動の運動指令の構成に重要な役割を果たすと考えられている。複雑スパイクの最適方向は対側か上方向である。複雑スパイクの時間経過についても、網膜誤差よりも、眼球運動の位置、速度、加速度から良く再構成できる<ref><pubmed> 9705472 </pubmed></ref> 。しかし、単純スパイクに比べて網膜誤差との相関が高いことが指摘されている。複雑スパイクは視索核から[[下オリーブ核]]を介する小脳への入力によるものと考えられ、それによって運ばれる網膜誤差の信号と単純スパイクに表現される信号との間の長期的相互作用が追従眼球運動の適応に貢献する可能性が指摘されている<ref><pubmed> 11877526 </pubmed></ref>。  


==終わりに==
==終わりに==


 近年では、追従眼球運動の基盤となる視覚運動検出の神経機構に関する研究が進んでいる。様々な[[wikipedia:ja:正弦波|正弦波]]運動縞や、行動実験で用いられた運動錯視刺激に対するMST野のニューロン活動が調べられており、視覚運動の検出過程の詳細に迫りつつある。追従眼球運動のための感覚-運動変換のうち、感覚に比較的近い領野(MST野、視索核、背外側橋核)のニューロン活動は総じて、視覚像の位置、速度、加速度の時間経過の線系モデルで良く再構成できるが、単一のモデルを用いて反応を再構成できるスピードの範囲は非常に限られている。システム全体としての非線形性は、神経経路上で行われる動く視覚像の解析の性質を反映するものと考えられる。この点が今後明らかにされることが期待される。
 近年では、追従眼球運動の基盤となる視覚運動検出の神経機構に関する研究が進んでいる。様々な[[wikipedia:ja:正弦波|正弦波]]運動縞や、行動実験で用いられた運動錯視刺激に対するMST野のニューロン活動が調べられており、視覚運動の検出過程の詳細に迫りつつある。追従眼球運動のこれまでの研究は、視覚像の位置、速度、加速度との関係を解析することで調べられてきた。今後、視覚運動の検出過程の詳細が解明されることにより、視覚画像入力から眼球運動出力までの一貫した神経情報処理が明らかになることが期待される。


==関連項目==
==関連項目==

案内メニュー