「細胞内カルシウムストア」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
編集の要約なし
15行目: 15行目:


==細胞内カルシウムシグナル==
==細胞内カルシウムシグナル==
 カルシウムイオンはさまざまな細胞機能を調節する[[セカンドメッセンジャー]]である。[[神経伝達物質]]の放出、[[シナプス可塑性]]の誘導などの生理機能に関わる一方で、[[細胞死]]をはじめとする病態にも関与している。細胞質のカルシウムイオン濃度は、刺激を受けていない静止状態では数十nM程度に保たれており、刺激に応じて数百nMから数十µMに渡る幅広い濃度範囲で変化する。さらに、カルシウムウェーブやカルシウムオシレーションといった、細胞内カルシウムイオン濃度の複雑な時空間動態が観察される。細胞内カルシウムストアはカルシウムイオンの取り込みと放出を通じて、カルシウムシグナルの形成を担う。
 [[カルシウム]]イオンはさまざまな細胞機能を調節する[[セカンドメッセンジャー]]である。[[神経伝達物質]]の放出、[[シナプス可塑性]]の誘導などの生理機能に関わる一方で、[[細胞死]]をはじめとする病態にも関与している。
 
 細胞質のカルシウムイオン濃度は、刺激を受けていない静止状態では数十nM程度に保たれており、刺激に応じて数百nMから数十µMに渡る幅広い濃度範囲で変化する。さらに、[[カルシウムウェーブ]]や[[カルシウムオシレーション]]といった、細胞内カルシウムイオン濃度の複雑な時空間動態が観察される。
 
 細胞内カルシウムストアはカルシウムイオンの取り込みと放出を通じて、カルシウムシグナルの形成を担う。


==小胞体==
==小胞体==
 小胞体はさまざまな機能を有する細胞内小器官であるが、[[滑面小胞体]]は細胞内カルシウムストアとして中心的な役割を担う。小胞体はカルシウムイオン取り込み機構により細胞質からカルシウムイオンを除去する。小胞体内腔のカルシウムイオン濃度は約1 mM程度に保たれており、細胞質との間で大きな濃度勾配を示す。この濃度勾配に従い、小胞体膜上のカルシウムイオンチャネルが開くと細胞質に向かってカルシウムイオンが放出される。
 小胞体はさまざまな機能を有する[[細胞内小器官]]であるが、[[滑面小胞体]]は細胞内カルシウムストアとして中心的な役割を担う。小胞体はカルシウムイオン取り込み機構により細胞質からカルシウムイオンを除去する。小胞体内腔のカルシウムイオン濃度は約1 mM程度に保たれており、細胞質との間で大きな濃度勾配を示す。この濃度勾配に従い、小胞体膜上のカルシウムイオンチャネルが開くと細胞質に向かってカルシウムイオンが放出される。


===小胞体へのカルシウムイオン取り込み===
===小胞体へのカルシウムイオン取り込み===
 小胞体内腔へのカルシウムイオン取り込みを担う[[カルシウムイオンポンプ]]は、[[筋小胞体/小胞体カルシウムATPアーゼ]]([[sarco/endoplasmic reticulum Ca<sup>2+</sup>-ATPase]]; [[SERCA]])である。SERCAは小胞体膜に局在し、ATPを 分解することによってカルシウムイオンを濃度勾配に逆らい取り込む<ref><pubmed> 8388268 </pubmed></ref>。SERCAの活性は細胞質カルシウムイオンの除去によるカルシウムシグナル形成のみならず、小胞体内腔の高いカルシウムイオン濃度の維持に不可欠である。
 小胞体内腔へのカルシウムイオン取り込みを担う[[カルシウムイオンポンプ]]は、[[筋小胞体/小胞体カルシウムATPアーゼ]]([[sarco/endoplasmic reticulum Ca<sup>2+</sup>-ATPase]]; [[SERCA]])である。SERCAは小胞体膜に局在し、[[ATP]]を分解することによってカルシウムイオンを濃度勾配に逆らい取り込む<ref><pubmed> 8388268 </pubmed></ref>。SERCAの活性は細胞質カルシウムイオンの除去によるカルシウムシグナル形成のみならず、小胞体内腔の高いカルシウムイオン濃度の維持に不可欠である。


 実際に[[タプシガルギン]]などのSERCA阻害薬を処置することで、小胞体内腔のカルシウムイオン濃度が大きく減少する(カルシウムイオン枯渇)。カルシウムイオン枯渇により、小胞体膜上の[[STIM1]]を介して細胞膜のカルシウムイオンチャネル[[Orai]]が活性化される(容量依存性カルシウムイオン流入)。これは小胞体内腔のカルシウムイオン濃度を維持するための恒常性機構であると期待される<ref><pubmed> 22914293 </pubmed></ref>。
 実際に[[タプシガルギン]]などのSERCA[[阻害薬]]を処置することで、小胞体内腔のカルシウムイオン濃度が大きく減少する(カルシウムイオン枯渇)。カルシウムイオン枯渇により、小胞体膜上の[[STIM1]]を介して細胞膜のカルシウムイオンチャネル[[Orai]]が活性化される([[容量依存性カルシウムイオン流入]])。これは小胞体内腔のカルシウムイオン濃度を維持するための[[恒常性]]機構であると期待される<ref><pubmed> 22914293 </pubmed></ref>。


===小胞体からのカルシウムイオン放出===
===小胞体からのカルシウムイオン放出===
 小胞体内腔からカルシウムイオンを放出するのは、[[イノシトール三リン酸受容体]](inositol triphosphate receptor; IP3R)と[[リアノジン受容体]](ryanodine receptor; RyR)という二種類のカルシウムイオンチャネルである。
 小胞体内腔からカルシウムイオンを放出するのは、[[イノシトール三リン酸受容体]](inositol triphosphate receptor; IP3R)と[[リアノジン受容体]](ryanodine receptor; RyR)という二種類のカルシウムイオンチャネルである。


 イノシトール三リン酸受容体は[[イノシトール三リン酸]]が結合することによって活性化され、また細胞質カルシウムイオンによっても活性化される。約2700アミノ酸からなる巨大分子で、[[IP3R1]]、[[IP3R2]]、[[IP3R3]]の3つのサブタイプが存在する<ref><pubmed> 17429043 </pubmed></ref>。IP3R1は主に神経細胞に発現しており、特に[[小脳]]の[[プルキンエ細胞]]に豊富に存在する<ref><pubmed> 7945203 </pubmed></ref>。IP3R2は主に[[アストロサイト]]に豊富に発現している<ref><pubmed> 18463250 </pubmed></ref>。
==== イノシトール三リン酸受容体 ====
 [[イノシトール三リン酸]]が結合することによって活性化され、また細胞質カルシウムイオンによっても活性化される。約2700アミノ酸からなる巨大分子で、[[IP3R1]]、[[IP3R2]]、[[IP3R3]]の3つのサブタイプが存在する<ref><pubmed> 17429043 </pubmed></ref>。IP3R1は主に神経細胞に発現しており、特に[[小脳]]の[[プルキンエ細胞]]に豊富に存在する<ref><pubmed> 7945203 </pubmed></ref>。IP3R2は主に[[アストロサイト]]に豊富に発現している<ref><pubmed> 18463250 </pubmed></ref>。


 リアノジン受容体は細胞質カルシウムイオンによって活性化される。また、[[一酸化窒素]]により活性化される機構も報告されている<ref name=kakizawa><pubmed> 22036948 </pubmed></ref>。約5000アミノ酸からなる巨大分子で、[[RyR1]]、[[RyR2]]、[[RyR3]]の3つのサブタイプがある。RyR1は骨格筋や小脳プルキンエ細胞、RyR2は[[心筋]]や脳、[[膵臓]]に、RyR3は[[平滑筋]]や脳などに優位に発現が見られる<ref><pubmed> 7876312 </pubmed></ref>。
==== リアノジン受容体 ====
 細胞質カルシウムイオンによって活性化される。また、[[一酸化窒素]]により活性化される機構も報告されている<ref name=kakizawa><pubmed> 22036948 </pubmed></ref>。約5000アミノ酸からなる巨大分子で、[[RyR1]]、[[RyR2]]、[[RyR3]]の3つのサブタイプがある。RyR1は骨格筋や小脳プルキンエ細胞、RyR2は[[心筋]]や脳、[[膵臓]]に、RyR3は[[平滑筋]]や脳などに優位に発現が見られる<ref><pubmed> 7876312 </pubmed></ref>。


===小胞体の細胞内カルシウムストアとしての意義===
===小胞体の細胞内カルシウムストアとしての意義===
 細胞内カルシウムストアとしての小胞体機能の著名例として、骨格筋や心筋における興奮収縮連関が挙げられるが、中枢神経系においても多様な機能を担っている <ref><pubmed> 9697848 </pubmed></ref> <ref><pubmed> 15618481 </pubmed></ref>。疾患との関係に着目すると、[[脊髄小脳変性症15型]]([[SCA15]])ではIP3R1遺伝子に[[欠失]]や[[ミスセンス変異]]が見つかっている<ref><pubmed> 18579805 </pubmed></ref> <ref><pubmed> 12828938 </pubmed></ref>。小胞体を細胞膜に近接させることでリアノジン受容体機能に関与する[[ジャンクトフィリン3]]については、[[ハンチントン病類縁疾患2型]]において当該遺伝子でのトリプレット伸長が報告されている<ref><pubmed> 11694876 </pubmed></ref>。また、一酸化窒素によって活性化されたRyR1を通じたカルシウムイオン放出が脳虚血時等の神経細胞死に関与することも示されている<ref name=kakizawa />。
 細胞内カルシウムストアとしての小胞体機能の著名例として、骨格筋や心筋における[[興奮収縮連関]]が挙げられるが、中枢神経系においても多様な機能を担っている <ref><pubmed> 9697848 </pubmed></ref> <ref><pubmed> 15618481 </pubmed></ref>。疾患との関係に着目すると、[[脊髄小脳変性症15型]]([[SCA15]])ではIP3R1遺伝子に[[欠失]]や[[ミスセンス変異]]が見つかっている<ref><pubmed> 18579805 </pubmed></ref> <ref><pubmed> 12828938 </pubmed></ref>。小胞体を細胞膜に近接させることでリアノジン受容体機能に関与する[[ジャンクトフィリン3]]については、[[ハンチントン病類縁疾患2型]]において当該遺伝子での[[トリプレット病|トリプレット]]伸長が報告されている<ref><pubmed> 11694876 </pubmed></ref>
 
 また、一酸化窒素によって活性化されたRyR1を通じたカルシウムイオン放出が[[脳虚血]]時等の神経細胞死に関与することも示されている<ref name=kakizawa />。


==ミトコンドリア==
==ミトコンドリア==
44行目: 52行目:


===ミトコンドリアからのカルシウムイオン放出===
===ミトコンドリアからのカルシウムイオン放出===
 ミトコンドリアからカルシウムイオンを放出する分子として、ミトコンドリア内膜に存在する[[Na+/Ca2+アンチポーター|Na<sup>+</sup>/Ca<sup>2+</sup>アンチポーター]](Na<sup>+</sup>/Ca<sup>2+</sup> exchanger; NCLX)が挙げられる<ref><pubmed> 20018762 </pubmed></ref>。また、生理的条件下では開口しないものの、過剰なCカルシウムイオン濃度上昇や[[アポトーシス誘発因子]][[Bax]]などによって開く、[[ミトコンドリア膜透過性遷移孔]](mitochondrial permeability transition pore; mPTP)というチャネル状の構造体が存在する。開口すると[[ミトコンドリア外膜]]の破壊を招き、カルシウムイオンを含むさまざまな物質が漏出する。
 ミトコンドリアからカルシウムイオンを放出する分子として、ミトコンドリア内膜に存在する[[Na+/Ca2+アンチポーター|Na<sup>+</sup>/Ca<sup>2+</sup>アンチポーター]](Na<sup>+</sup>/Ca<sup>2+</sup> exchanger; NCLX)が挙げられる<ref><pubmed> 20018762 </pubmed></ref>。また、生理的条件下では開口しないものの、過剰なカルシウムイオン濃度上昇や[[アポトーシス誘発因子]][[Bax]]などによって開く、[[ミトコンドリア膜透過性遷移孔]](mitochondrial permeability transition pore; mPTP)というチャネル状の構造体が存在する。開口すると[[ミトコンドリア外膜]]の破壊を招き、カルシウムイオンを含むさまざまな物質が漏出する。


===ミトコンドリアの細胞内カルシウムストアとしての意義===
===ミトコンドリアの細胞内カルシウムストアとしての意義===
 カルシウムイオンの取り込みと放出を通じて、カルシウムウェーブやカルシウムオシレーションの形成に寄与している<ref><pubmed> 16415789 </pubmed></ref> <ref><pubmed> 7566122 </pubmed></ref>。また、mPTPはカルシウムイオンとともにシトクロムCを放出させ、[[カスパーゼ]]経路を介した[[細胞死]]を引き起こす<ref><pubmed> 10393078 </pubmed></ref>。
 カルシウムイオンの取り込みと放出を通じて、カルシウムウェーブやカルシウムオシレーションの形成に寄与している<ref><pubmed> 16415789 </pubmed></ref> <ref><pubmed> 7566122 </pubmed></ref>。また、[[MPTP]]はカルシウムイオンとともに[[wj:シトクロムC|シトクロムC]]を放出させ、[[カスパーゼ]]経路を介した[[細胞死]]を引き起こす<ref><pubmed> 10393078 </pubmed></ref>。


 ミトコンドリアはmitofusin2などの因子を介して、小胞体と近接して局在する<ref><pubmed> 19052620 </pubmed></ref>。これにより、小胞体から放出されたカルシウムイオンがミトコンドリアに効率的に取り込まれる<ref><pubmed> 9624056 </pubmed></ref>。このような小胞体とミトコンドリアの連関は、局所的なATP合成の活性化などを促す役割があると考えられる<ref><pubmed> 20655468 </pubmed></ref>。
 ミトコンドリアは[[mitofusin2]]などの因子を介して、小胞体と近接して局在する<ref><pubmed> 19052620 </pubmed></ref>。これにより、小胞体から放出されたカルシウムイオンがミトコンドリアに効率的に取り込まれる<ref><pubmed> 9624056 </pubmed></ref>。このような小胞体とミトコンドリアの連関は、局所的なATP合成の活性化などを促す役割があると考えられる<ref><pubmed> 20655468 </pubmed></ref>。


==その他の細胞内カルシウムストア==
==その他の細胞内カルシウムストア==

案内メニュー