「コネクトーム」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
編集の要約なし
10行目: 10行目:
{{box|text=コネクトームは、神経系のすべての神経細胞が接続することでできた神経回路の総体を意味する。本来、ある生物個体、あるいはある生物種の神経系において、全神経細胞の接続の総体を意味する概念である。しかしながら、神経系の一部で神経細胞が[[化学シナプス]]や[[電気シナプス]]で接続された局所的な接続ダイアグラムを説明する場合にも使われる。更に、神経細胞レベルでの接続だけでなく、脳の大まかな領域同士の神経線維の接続に言及する場合にも使われている。'''コネクトミクス(connectomics)'''は、コネクトームを理解するための研究法、つまり実験、検出などの方法、その方法を適用した結果の解釈、そして複数の方法論を統合した研究戦略の概念である。}}
{{box|text=コネクトームは、神経系のすべての神経細胞が接続することでできた神経回路の総体を意味する。本来、ある生物個体、あるいはある生物種の神経系において、全神経細胞の接続の総体を意味する概念である。しかしながら、神経系の一部で神経細胞が[[化学シナプス]]や[[電気シナプス]]で接続された局所的な接続ダイアグラムを説明する場合にも使われる。更に、神経細胞レベルでの接続だけでなく、脳の大まかな領域同士の神経線維の接続に言及する場合にも使われている。'''コネクトミクス(connectomics)'''は、コネクトームを理解するための研究法、つまり実験、検出などの方法、その方法を適用した結果の解釈、そして複数の方法論を統合した研究戦略の概念である。}}


'''目次'''
# 用語「コネクトーム」の起源
# コネクトームの階層
# 細胞レベルのコネクトーム
# 巨視的なコネクトーム
# 機能的コネクトーム
# コネクトームの利用
# 関連項目
# 参考文献
<br />
<br />


=== '''用語「コネクトーム」の起源''' ===
=== '''用語「コネクトーム」の起源''' ===
50行目: 38行目:
解像度の観点からは、メソスケール、ミクロスケール、マクロスケールに分類されるコネクトームであるが、特にメソスケール、ミクロスケールで注目されるのは、神経細胞レベル、神経細胞のSubcellularレベルでの神経細胞同士の結合性である。つまり、どの神経細胞同士がシナプスで結合しているか、更にシナプスが細胞体や樹状突起のどの部分に存在しているか、という中核的な情報である。神経細胞同士の結合性を決定するには、上述した歴史的に利用されてきた方法論に加えて、最近の動向としては、以下のような6つの現代的なアプローチがあるが、それぞれのアプローチに長所、短所があり、互いに相補的なアプローチとなっていくものと予想される。
解像度の観点からは、メソスケール、ミクロスケール、マクロスケールに分類されるコネクトームであるが、特にメソスケール、ミクロスケールで注目されるのは、神経細胞レベル、神経細胞のSubcellularレベルでの神経細胞同士の結合性である。つまり、どの神経細胞同士がシナプスで結合しているか、更にシナプスが細胞体や樹状突起のどの部分に存在しているか、という中核的な情報である。神経細胞同士の結合性を決定するには、上述した歴史的に利用されてきた方法論に加えて、最近の動向としては、以下のような6つの現代的なアプローチがあるが、それぞれのアプローチに長所、短所があり、互いに相補的なアプローチとなっていくものと予想される。


'''1)生理学的方法'''
==== '''1)生理学的方法''' ====
生理学的な方法を利用し、神経細胞間の結合性を調べる。これには、複数神経細胞の全細胞記録法、ケージド神経伝達物質のレーザー光刺激法、光遺伝学、[[カルシウムイオン]]のセンサー(カルシウム感受性蛍光色素、GCaMP)、電位感受性センサーなどが利用される。将来的に、[[哺乳類]]の神経系全体のコネクトームの解明には大規模生理学に適した方法論の開発が必要である。<br />
生理学的な方法を利用し、神経細胞間の結合性を調べる。これには、複数神経細胞の全細胞記録法、ケージド神経伝達物質のレーザー光刺激法、光遺伝学、[[カルシウムイオン]]のセンサー(カルシウム感受性蛍光色素、GCaMP)、電位感受性センサーなどが利用される。将来的に、[[哺乳類]]の神経系全体のコネクトームの解明には大規模生理学に適した方法論の開発が必要である。<br />




'''2)シリアル電子顕微鏡'''
==== '''2)シリアル電子顕微鏡''' ====
電子顕微鏡写真に基づき、形態的にコネクトームを構築することは、センチュウのコネクトーム構築でも利用された効果的な方法である。しかしながら、哺乳類の脳のようにサイズの大きな構造におけるコネクトームの構築では、薄い切片を失うことなく、巨大な数の電子顕微鏡写真撮影を行い、それぞれの写真上の神経細胞とその突起、結合性を、多数の写真上で逐一トレースしていく必要がある。その[[情報量]]は、ビッグデータの典型であり、方法論の開発が進められてきている。特に重要なのは、電子顕微鏡写真のトレースを一箇所間違えると、全く違う細胞をトレースすることになるという危険性があることである。そのため、Sebastian Seungらは、網膜のコネクトームを理解するために、ゲーム感覚で、神経細胞のコネクトーム構築に、一般市民を参加させようとするEyeWire()と名付けたクラウドサイトを構築している。これは、現状では、ヒトという作業者の目で電子顕微鏡写真を見て、それをトレースしていくことが、最も確実であるという見地から実施されているものであり、将来は、人工知能などにより、コネクトーム構築の作業が自動化される可能性も高い。
電子顕微鏡写真に基づき、形態的にコネクトームを構築することは、センチュウのコネクトーム構築でも利用された効果的な方法である。しかしながら、哺乳類の脳のようにサイズの大きな構造におけるコネクトームの構築では、薄い切片を失うことなく、巨大な数の電子顕微鏡写真撮影を行い、それぞれの写真上の神経細胞とその突起、結合性を、多数の写真上で逐一トレースしていく必要がある。その[[情報量]]は、ビッグデータの典型であり、方法論の開発が進められてきている。特に重要なのは、電子顕微鏡写真のトレースを一箇所間違えると、全く違う細胞をトレースすることになるという危険性があることである。そのため、Sebastian Seungらは、網膜のコネクトームを理解するために、ゲーム感覚で、神経細胞のコネクトーム構築に、一般市民を参加させようとするEyeWire()と名付けたクラウドサイトを構築している。これは、現状では、ヒトという作業者の目で電子顕微鏡写真を見て、それをトレースしていくことが、最も確実であるという見地から実施されているものであり、将来は、人工知能などにより、コネクトーム構築の作業が自動化される可能性も高い。


61行目: 49行目:




'''3)遺伝学的標識法'''
==== '''3)遺伝学的標識法''' ====
神経細胞を遺伝学的なレポーター(例、蛍光タンパク質)で標識し、神経細胞の形態と結合性を理解する方法論である。この方法論の特徴は、光学顕微鏡レベルでの観察が可能であるので、長い神経線維でつながった細胞同士のコネクトームの構築にも利用できることである。また、遺伝学的に標識できるため様々な神経細胞で特異的に発現するような遺伝子をドライバー(例、Cre、GAL4システム)を利用して、特定の神経回路のコネクトームについての知見を深めることができる。当初は、個々の神経細胞を蛍光タンパク質などで標識する方法が用いられていたが、コネクトーム構築には、多数の神経細胞を同時に観察する必要がある。そのために開発された方法論の1つが、Brainbowと呼ばれる技術である。この技術は、確率論的、いくつかの蛍光団(XFPを)の組み合わせの発現に 依存しています。 各ニューロンは、100以上の異なる色の理論上のパレットを実現するために、異なる比率で最大4つの異なる各XFPのランダムなコレク ションを表現しています。 ランダム化は、タンパク質[[Creリコンビナーゼ]]は、lox部位と呼ばれる短い(34ヌクレオチド)配列の対の間の反転または [[DNA]]の切除を触媒するのCre-lox組換えの巧妙なアプリケーション、によって達成されます。
神経細胞を遺伝学的なレポーター(例、蛍光タンパク質)で標識し、神経細胞の形態と結合性を理解する方法論である。この方法論の特徴は、光学顕微鏡レベルでの観察が可能であるので、長い神経線維でつながった細胞同士のコネクトームの構築にも利用できることである。また、遺伝学的に標識できるため様々な神経細胞で特異的に発現するような遺伝子をドライバー(例、Cre、GAL4システム)を利用して、特定の神経回路のコネクトームについての知見を深めることができる。当初は、個々の神経細胞を蛍光タンパク質などで標識する方法が用いられていたが、コネクトーム構築には、多数の神経細胞を同時に観察する必要がある。そのために開発された方法論の1つが、Brainbowと呼ばれる技術である。この技術は、確率論的、いくつかの蛍光団(XFPを)の組み合わせの発現に 依存しています。 各ニューロンは、100以上の異なる色の理論上のパレットを実現するために、異なる比率で最大4つの異なる各XFPのランダムなコレク ションを表現しています。 ランダム化は、タンパク質[[Creリコンビナーゼ]]は、lox部位と呼ばれる短い(34ヌクレオチド)配列の対の間の反転または [[DNA]]の切除を触媒するのCre-lox組換えの巧妙なアプリケーション、によって達成されます。
[[ファイル:Brainbow.jpg|サムネイル|右|Brainbow]]
[[ファイル:Brainbow.jpg|サムネイル|右|Brainbow]]
71行目: 59行目:




'''4)Trans-synapticな方法'''
==== '''4)Trans-synapticな方法''' ====
前項、遺伝学的標識法と類似しているが、より積極的にシナプス結合している神経細胞を探査していくコネクトームの構築法である。その1つは、小麦胚レクチン(WGA)などが、前シナプス部の細胞に導入された物質が、細胞質を介して直接は繋がっていない後シナプス部にシナプスを介して移行(Trans-synaptic)するということを利用するものである。これは、歴史的には、物質そのものを注入することで行われてきたが、ウィルスベクター、[[トランスジェニックマウス]]のような形で、遺伝学的に利用することが可能になっている。
前項、遺伝学的標識法と類似しているが、より積極的にシナプス結合している神経細胞を探査していくコネクトームの構築法である。その1つは、小麦胚レクチン(WGA)などが、前シナプス部の細胞に導入された物質が、細胞質を介して直接は繋がっていない後シナプス部にシナプスを介して移行(Trans-synaptic)するということを利用するものである。これは、歴史的には、物質そのものを注入することで行われてきたが、ウィルスベクター、[[トランスジェニックマウス]]のような形で、遺伝学的に利用することが可能になっている。


77行目: 65行目:




'''5)生体試料観察の工夫。'''
==== '''5)生体試料観察の工夫。''' ====
組織の透明化、Clarity, expansion 。[[共焦点顕微鏡]]、ナノスコピー、光シート顕微鏡など。<br />
組織の透明化、Clarity, expansion 。[[共焦点顕微鏡]]、ナノスコピー、光シート顕微鏡など。<br />




'''6)構成論的手法'''
==== '''6)構成論的手法''' ====
システムを製作し、動作させることにより理解しようという方法論。例えば、シミュレーションやロボティクスを用いた戦略<br />
システムを製作し、動作させることにより理解しようという方法論。例えば、シミュレーションやロボティクスを用いた戦略<br />


87行目: 75行目:


=== '''巨視的なコネクトーム'''<br /> ===
=== '''巨視的なコネクトーム'''<br /> ===
 
fMRI, tensor
書きかけ。
書きかけ。
そのような軸索のトレースなどの脳研究の確立された方法、コネクトームデータセットを構築するための初期の道を提供します。 しかし、生きている被験体におけるより最近の進歩は、次のような非侵襲的イメージング技術を使用してなされたものであり、 拡散磁気共鳴イメージング及び機能的磁気共鳴イメージング法(fMRI)。 ラクトと組み合わせたときに、最初は、脳内の主要な繊維束の再構成を可能にします。 第二は、機能的に接続されている脳の構造的および解剖学的に異なる領域の同定を可能にする、研究者が(安静時または指向のタスクを実行している間のいずれか)は、脳のネットワーク活動をキャプチャすることができます。
そのような軸索のトレースなどの脳研究の確立された方法、コネクトームデータセットを構築するための初期の道を提供します。 しかし、生きている被験体におけるより最近の進歩は、次のような非侵襲的イメージング技術を使用してなされたものであり、 拡散磁気共鳴イメージング及び機能的磁気共鳴イメージング法(fMRI)。 ラクトと組み合わせたときに、最初は、脳内の主要な繊維束の再構成を可能にします。 第二は、機能的に接続されている脳の構造的および解剖学的に異なる領域の同定を可能にする、研究者が(安静時または指向のタスクを実行している間のいずれか)は、脳のネットワーク活動をキャプチャすることができます。
99行目: 87行目:
機能的コネクトーム[ 編集 ]
機能的コネクトーム[ 編集 ]


=== '''機能的コネクトーム'''<br /> ===
使用して機能的MRI(fMRIの)で休止状態とタスクの間に、コネクトーム回路の機能が検討されている。 [28]はちょうど地球の表面のように詳細なロードマップは、これらの道路を走行や車両の種類について多くを私たちに教えていません彼らはそのような意識のような特定の機能の動作を引き起こす、それは解剖学的接続に機能を関連付けるの理論を構築することが必要であるか神経構造を理解するために、どのような貨物運搬されている。[29]
使用して機能的MRI(fMRIの)で休止状態とタスクの間に、コネクトーム回路の機能が検討されている。 [28]はちょうど地球の表面のように詳細なロードマップは、これらの道路を走行や車両の種類について多くを私たちに教えていません彼らはそのような意識のような特定の機能の動作を引き起こす、それは解剖学的接続に機能を関連付けるの理論を構築することが必要であるか神経構造を理解するために、どのような貨物運搬されている。[29]


119行目: 109行目:
=== '''コネクトームの利用''' ===  
=== '''コネクトームの利用''' ===  
<br />
<br />
コネクトームを用いてネットワークとして研究することができるネットワークの科学とグラフ理論 。 マイクロスケールコネクトームの場合には、このネットワーク(またはノードのグラフが )ニューロンであり、エッジは、これらのニューロン間のシナプスに相当します。 グラフのエッジがそれらの領域を相互接続する軸索から誘導されながら、マクロスケールのコネクトームの場合、ノードは、のROI(関心領域)に対応しています。 彼らは実際に脳(または、広義には、全体の神経系)内の接続を説明する数学的な意味でのグラフであるとしてこのようconnectomesは時々 、 脳のグラフと呼ばれています。
コネクトームを用いてネットワークとして研究することができるネットワークの科学とグラフ理論 。 マイクロスケールコネクトームの場合には、このネットワーク(またはノードのグラフが )ニューロンであり、エッジは、これらのニューロン間のシナプスに相当します。 グラフのエッジがそれらの領域を相互接続する軸索から誘導されながら、マクロスケールのコネクトームの場合、ノードは、のROI(関心領域)に対応しています。 彼らは実際に脳(または、広義には、全体の神経系)内の接続を説明する数学的な意味でのグラフであるとしてこのようconnectomesは時々 、 脳のグラフと呼ばれています。
研究者の一群(Iturria-メディナら 、2008)[30]使用してコネクトームデータセットを構築した拡散テンソル画像 (DTI)[31] [32] 70-90皮質と基礎の間で平均接続確率の導出に続いての脳の灰白質領域。 すべてのネットワークは、小さな世界の属性と「広いスケール」度分布を有することが見出されました。 これらのネットワークでの間隔度の中心性の分析は、高中心性を実証した楔前部 、 島 、 頭頂および前頭皮質。 別のグループ(功ら2008)[33]は 78皮質領域間の解剖学的接続のネットワークをマッピングするためにDTIを適用しております。 この研究はまた楔前部と上前頭回を含む、ヒトの脳のいくつかのハブ領域を同定しました。
研究者の一群(Iturria-メディナら 、2008)[30]使用してコネクトームデータセットを構築した拡散テンソル画像 (DTI)[31] [32] 70-90皮質と基礎の間で平均接続確率の導出に続いての脳の灰白質領域。 すべてのネットワークは、小さな世界の属性と「広いスケール」度分布を有することが見出されました。 これらのネットワークでの間隔度の中心性の分析は、高中心性を実証した楔前部 、 島 、 頭頂および前頭皮質。 別のグループ(功ら2008)[33]は 78皮質領域間の解剖学的接続のネットワークをマッピングするためにDTIを適用しております。 この研究はまた楔前部と上前頭回を含む、ヒトの脳のいくつかのハブ領域を同定しました。
125行目: 114行目:
connectomicsのサブフィールドは、複数の人の脳のグラフの比較を扱っています。 それは、次のようなコンセンサスグラフ構築することが可能であるブダペストリファレンスコネクトームを特定の方法でいくつかのconnectomesを「平均化」することによって。 一方、一部の研究者は、個々のconnectomesの違いの原因を調査しました。 それは、女性のマクロスケールconnectomesは男性よりも有意に多くのエッジが含まれていることが見出されており、女性のconnectomesにおけるエッジの大部分は、2つの半球の間で実行する。[42] [43]また、概してconnectomes展示スモールワールド年齢とともに減少し、全体的な皮質の接続を持つ文字を、。 [44]として2015年の継続的な目的のHCP寿命パイロットプロジェクトが 6の年齢層(4-6、8-9、14-間のコネクトームの違いを識別することです15、25-35、45-55、65-75)。 Connectogramsはローブが主催する円の周りの皮質領域を配置することによって、完全な脳データを視覚化するために使用されている。 [45] [46]内側の円は、カラースケールで皮質のメトリックを示しています。 DTIデータにおける白質のファイバ接続は、これらの皮質領域の間に引かれたとによって重み付けされる異方性比率との接続強度。 このようなグラフは、さらに有名な外傷性脳損傷患者にダメージを分析するために使用されているフィニアスゲージ 。[47]統計グラフ理論は、これらの脳のグラフを解析するための高度なパターン認識や推論ツールを開発している新興分野です(ゴールデンら、2009)。
connectomicsのサブフィールドは、複数の人の脳のグラフの比較を扱っています。 それは、次のようなコンセンサスグラフ構築することが可能であるブダペストリファレンスコネクトームを特定の方法でいくつかのconnectomesを「平均化」することによって。 一方、一部の研究者は、個々のconnectomesの違いの原因を調査しました。 それは、女性のマクロスケールconnectomesは男性よりも有意に多くのエッジが含まれていることが見出されており、女性のconnectomesにおけるエッジの大部分は、2つの半球の間で実行する。[42] [43]また、概してconnectomes展示スモールワールド年齢とともに減少し、全体的な皮質の接続を持つ文字を、。 [44]として2015年の継続的な目的のHCP寿命パイロットプロジェクトが 6の年齢層(4-6、8-9、14-間のコネクトームの違いを識別することです15、25-35、45-55、65-75)。 Connectogramsはローブが主催する円の周りの皮質領域を配置することによって、完全な脳データを視覚化するために使用されている。 [45] [46]内側の円は、カラースケールで皮質のメトリックを示しています。 DTIデータにおける白質のファイバ接続は、これらの皮質領域の間に引かれたとによって重み付けされる異方性比率との接続強度。 このようなグラフは、さらに有名な外傷性脳損傷患者にダメージを分析するために使用されているフィニアスゲージ 。[47]統計グラフ理論は、これらの脳のグラフを解析するための高度なパターン認識や推論ツールを開発している新興分野です(ゴールデンら、2009)。


'''文献'''<br />
=== '''参考項目''' ===<br />
 


# 番号付き箇条書きの項目
=== '''文献''' ===<br />

案内メニュー