9,444
回編集
細編集の要約なし |
細編集の要約なし |
||
30行目: | 30行目: | ||
このような知見を元にしてAnn Triesmanは注意の「[[特徴統合理論]]」(feature integration theory)を作り上げた<ref><pubmed> 7351125 </pubmed></ref>。特徴統合理論では、視野像は各特徴(輝度、色、傾きなど)ごとに並行して処理され、それらの特徴が最終的に統合される。よって、図1左の色のpop-out刺激では、色特徴の処理の段階で仲間はずれを検出することが出来るので処理が速いのだが、図1右のconjunction searchでは統合された情報を探索しなければならないために処理が遅くなる、と説明される。 | このような知見を元にしてAnn Triesmanは注意の「[[特徴統合理論]]」(feature integration theory)を作り上げた<ref><pubmed> 7351125 </pubmed></ref>。特徴統合理論では、視野像は各特徴(輝度、色、傾きなど)ごとに並行して処理され、それらの特徴が最終的に統合される。よって、図1左の色のpop-out刺激では、色特徴の処理の段階で仲間はずれを検出することが出来るので処理が速いのだが、図1右のconjunction searchでは統合された情報を探索しなければならないために処理が遅くなる、と説明される。 | ||
視覚でのpop-outに類似した現象として、聴覚の心理学ではoddball paradigmというものが用いられる。このoddball paradigmでは、ピ、ピ、ピと連続する純音刺激に違う周波数の純音が混ざったり、または音が鳴らなかった場合(deviantsと呼ばれる)にはその時に注意が誘引される。この場合は空間ではなくて、時間的配列がボトムアップ性注意を誘引する例と言える。 | |||
== サリエンシー・マップ(saliency map) == | == サリエンシー・マップ(saliency map) == | ||
[[Image:サリエンシー3.png|thumb|300px|'''図2.サリエンシー計算論モデルでの主なステップ'''<br>入力する視覚情報は並行処理によって[1]低レベルの視覚特徴ごとに分析が行われ、側抑制メカニズムによって<ref name=ref1><pubmed> 3836989 </pubmed></ref>特徴ごとのサリエンシー(特徴マップ)が計算される。それらの特徴マプを足し合わせることで単一の<ref name=ref2>'''L. Itti, C. Koch, & E. Niebur'''<br>A Model of Saliency-Based Visual Attention for Rapid Scene Analysis.<br>''IEEE Transactions on Pattern Analysis and Machine Intelligence'': 1998, 20(11):1254-1259.</ref>サリエンシー・マップが計算される。<ref><pubmed>28044023</pubmed></ref>より許可のもと改変して作成。/ CC-BY 4.0)]] | [[Image:サリエンシー3.png|thumb|300px|'''図2.サリエンシー計算論モデルでの主なステップ'''<br>入力する視覚情報は並行処理によって[1]低レベルの視覚特徴ごとに分析が行われ、側抑制メカニズムによって<ref name=ref1><pubmed> 3836989 </pubmed></ref>特徴ごとのサリエンシー(特徴マップ)が計算される。それらの特徴マプを足し合わせることで単一の<ref name=ref2>'''L. Itti, C. Koch, & E. Niebur'''<br>A Model of Saliency-Based Visual Attention for Rapid Scene Analysis.<br>''IEEE Transactions on Pattern Analysis and Machine Intelligence'': 1998, 20(11):1254-1259.</ref>サリエンシー・マップが計算される。<ref><pubmed>28044023</pubmed></ref>より許可のもと改変して作成。/ CC-BY 4.0)]] | ||