「神経前駆細胞」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
編集の要約なし
17行目: 17行目:
'''
'''
 哺乳類の胎生期大脳皮質の神経発生過程においては、未分化型前駆細胞が脳室帯のapical面において自己複製を伴う非対称分裂を行い<ref name=ref4><pubmed> 11567613 </pubmed></ref><ref name=ref5><pubmed> 15175243 </pubmed></ref><ref name=ref6><pubmed> 18084280 </pubmed></ref>、将来の神経細胞もしくは中間型前駆細胞を生じる。<br />
 哺乳類の胎生期大脳皮質の神経発生過程においては、未分化型前駆細胞が脳室帯のapical面において自己複製を伴う非対称分裂を行い<ref name=ref4><pubmed> 11567613 </pubmed></ref><ref name=ref5><pubmed> 15175243 </pubmed></ref><ref name=ref6><pubmed> 18084280 </pubmed></ref>、将来の神経細胞もしくは中間型前駆細胞を生じる。<br />
 この中間型前駆細胞は限られた分化ポテンシャルを持ち、主に脳室帯のbasal側である脳室下帯で1〜3回程度の対称分裂によって神経細胞だけを生じる“neurogenic transient amplifying cells”の一種と考えられている<ref name=ref7><pubmed> 14703572 </pubmed></ref>。この中間型前駆細胞は、大脳皮質の層形成、領野形成の構築に重要な役割を担うとされている。たとえば、“upper layer hypothesis”<ref name=ref8><pubmed> 7076556</pubmed></ref>では、中間型前駆細胞が大脳皮質発生初期に上層の神経細胞の発生の運命決定に寄与する可能性が報告されている<ref name=ref9><pubmed> 11493521 </pubmed></ref><ref name=ref10><pubmed> 15238450 </pubmed></ref>。また、“intermediate progenitor hypothesis”では、進化に伴う中間型前駆細胞の増殖性亢進が霊長類における大脳皮質表面積の拡大に寄与する可能性が指摘されている<ref name=ref11><pubmed> 17033683 </pubmed></ref>。実際、中間型前駆細胞の分子マーカーであるTbr2(T-box brain protein 2)のヒトにおける変異は、大脳皮質形成不全との関連性が指摘されており<ref name=ref12><pubmed> 17353897 </pubmed></ref>、大脳皮質の細胞構築における中間型前駆細胞の役割に興味が持たれる。一方、中間型前駆細胞は脳室下帯が形成される以前に出現し、発生期全体を通して豊富に存在するとの報告もあり<ref name=ref13><pubmed> 16284248 </pubmed></ref>、定量的な解析においては上層の神経細胞ばかりでなく、深層の神経細胞の大多数(50〜95%)が中間型前駆細胞に由来すると指摘されている<ref name=ref14><pubmed> 14963232 </pubmed></ref>。これらの知見は、領域・時期特異的に異なる性質に制限された中間型前駆細胞が、各々のradial unitから神経細胞の産生を指数関数的に増幅し、これが広範な大脳皮質発生に寄与する可能性を示唆するものである。
 この中間型前駆細胞は限られた分化ポテンシャルを持ち、主に脳室帯のbasal側である脳室下帯で1〜3回程度の対称分裂によって神経細胞だけを生じる“neurogenic transient amplifying cells”の一種と考えられている<ref name=ref7><pubmed> 14703572 </pubmed></ref>。この中間型前駆細胞は、大脳皮質の層形成、領野形成の構築に重要な役割を担うとされている。たとえば、“upper layer hypothesis”<ref name=ref8><pubmed> 7076556</pubmed></ref>では、中間型前駆細胞が大脳皮質発生後期に上層の神経細胞の発生の運命決定に寄与する可能性が報告されている<ref name=ref9><pubmed> 11493521 </pubmed></ref><ref name=ref10><pubmed> 15238450 </pubmed></ref>。また、“intermediate progenitor hypothesis”では、進化に伴う中間型前駆細胞の増殖性亢進が霊長類における大脳皮質表面積の拡大に寄与する可能性が指摘されている<ref name=ref11><pubmed> 17033683 </pubmed></ref>。実際、中間型前駆細胞の分子マーカーであるTbr2(T-box brain protein 2)のヒトにおける変異は、大脳皮質形成不全との関連性が指摘されており<ref name=ref12><pubmed> 17353897 </pubmed></ref>、大脳皮質の細胞構築における中間型前駆細胞の役割に興味が持たれる。一方、中間型前駆細胞は脳室下帯が形成される以前に出現し、発生期全体を通して豊富に存在するとの報告もあり<ref name=ref13><pubmed> 16284248 </pubmed></ref>、定量的な解析においては上層の神経細胞ばかりでなく、深層の神経細胞の大多数(50〜95%)が中間型前駆細胞に由来すると指摘されている<ref name=ref14><pubmed> 14963232 </pubmed></ref>。これらの知見は、領域・時期特異的に異なる性質に制限された中間型前駆細胞が、各々のradial unitから神経細胞の産生を指数関数的に増幅し、これが広範な大脳皮質発生に寄与する可能性を示唆するものである。




25行目: 25行目:
 それでは、脳室面で分裂する未分化型前駆細胞と非脳室面で分裂する中間型前駆細胞の運命は、どのように決定付けられるのであろうか?<br />
 それでは、脳室面で分裂する未分化型前駆細胞と非脳室面で分裂する中間型前駆細胞の運命は、どのように決定付けられるのであろうか?<br />
 未分化型前駆細胞の維持・増殖にはNotchシグナルが重要な役割を果たすことが知られている<ref name=ref15><pubmed> 11937492</pubmed></ref>。未分化型前駆細胞において、このNotchシグナルをHes1の強制発現によって活性化すると、中間型前駆細胞の分子マーカー(Tbr2など)の発現が抑制すること<ref name=ref16><pubmed> 18400163</pubmed></ref>、未分化型前駆細胞が強いNotchシグナルを利用するのに対して、中間型前駆細胞は減弱したNotchシグナルを利用すること<ref name=ref17><pubmed> 17721509</pubmed></ref>から、Notchシグナルの変化が未分化型前駆細胞から中間型前駆細胞への推移に寄与している可能性がある。<br />
 未分化型前駆細胞の維持・増殖にはNotchシグナルが重要な役割を果たすことが知られている<ref name=ref15><pubmed> 11937492</pubmed></ref>。未分化型前駆細胞において、このNotchシグナルをHes1の強制発現によって活性化すると、中間型前駆細胞の分子マーカー(Tbr2など)の発現が抑制すること<ref name=ref16><pubmed> 18400163</pubmed></ref>、未分化型前駆細胞が強いNotchシグナルを利用するのに対して、中間型前駆細胞は減弱したNotchシグナルを利用すること<ref name=ref17><pubmed> 17721509</pubmed></ref>から、Notchシグナルの変化が未分化型前駆細胞から中間型前駆細胞への推移に寄与している可能性がある。<br />
 また、Fringe等による糖鎖修飾や細胞内カルシウム濃度がNotchシグナルの調節に関与する可能性が近年報告されているが、未分化型前駆細胞はbFGFによって細胞内カルシウム濃度が上昇するが、EGF刺激では同様のことが観察されない一方で、中間型前駆細胞はbFGF、EGFいずれによっても細胞内カルシウム濃度の上昇が確認されている<ref name=ref18><pubmed> 12514221</pubmed></ref>。つまり、脳室下帯に位置する中間型前駆細胞はEGF反応性が高いことから、細胞内カルシウム濃度の調節が中間型前駆細胞の発生に関与している可能性も示唆される。
 また、未分化型前駆細胞が2つの娘細胞に分裂する際に、片方の娘細胞だけに細胞周期調節因子であるCyclin D2が受け継がれ、その細胞運命を未分化な状態に維持することが明らかになっている<ref name=ref18><pubmed> 22395070 </pubmed></ref>ことから、様々な分子機構によって未分化型と中間型の前駆細胞の運命が制御されていると考えられる。




31行目: 31行目:
== 多極性細胞 ==
== 多極性細胞 ==
'''
'''
 一方、最近の研究で、未分化型前駆細胞から生み出された未成熟な細胞(将来の神経細胞)は、分化過程において脳室下帯や中間帯で多極性形態(多数の突起を持つ)細胞へとその形態を大きく変化させることが見出されている<ref name=ref6><pubmed> 18084280</pubmed></ref><ref name=ref19><pubmed> 14602813</pubmed></ref>。このとき、未分化型前駆細胞が生み出した未成熟な細胞は、中間型幹細胞を経て多極性形態へと変化する細胞系譜と、中間型前駆細胞にならずに直接、多極性細胞へと変化する細胞系譜が観察されている<ref name=ref20><pubmed> 19150920</pubmed></ref>。また、最近の研究で、未分化型前駆細胞から中間型前駆細胞や多極性細胞へと変化する際には、ミトコンドリア局在型の活性酸素種の量が大きく減少することが見出されており<ref name=ref21><pubmed> 27993981</pubmed></ref>、細胞内の代謝状態の変化が前駆細胞の推移と密接に関与し、これが大脳皮質の発生に決定的な役割を果たす可能性がある。実際、こうした未分化型前駆細胞から中間型前駆細胞および多極性細胞への推移が上手く進行しないと、神経分化に決定的な異常を生じることが報告されている<ref name=ref21><pubmed> 27993981</pubmed></ref><ref name=ref22><pubmed> 22726835</pubmed></ref><ref name=ref23><pubmed> 23395638</pubmed></ref>]。
 一方、最近の研究で、未分化型前駆細胞から生み出された未成熟な細胞(将来の神経細胞)は、分化過程において脳室下帯や中間帯で多極性形態(多数の突起を持つ)細胞へとその形態を大きく変化させることが見出されている<ref name=ref6><pubmed> 18084280</pubmed></ref><ref name=ref19><pubmed> 14602813</pubmed></ref>。このとき、未分化型前駆細胞が生み出した未成熟な細胞は、中間型幹細胞を経て多極性形態へと変化する細胞系譜と、中間型前駆細胞にならずに直接、多極性細胞へと変化する細胞系譜が観察されている<ref name=ref20><pubmed> 19150920</pubmed></ref>。また、未分化型前駆細胞から中間型前駆細胞や多極性細胞へと変化する際には、ミトコンドリア局在型の活性酸素種の量が大きく減少することが見出されており<ref name=ref21><pubmed> 27993981</pubmed></ref>、細胞内の代謝状態の変化が前駆細胞の推移と密接に関与し、これが大脳皮質の発生に決定的な役割を果たす可能性がある。実際、こうした未分化型前駆細胞から中間型前駆細胞および多極性細胞への推移が上手く進行しないと、神経分化に決定的な異常を生じることが報告されている<ref name=ref21><pubmed> 27993981</pubmed></ref><ref name=ref22><pubmed> 22726835</pubmed></ref><ref name=ref23><pubmed> 23395638</pubmed></ref>]。




80

回編集

案内メニュー