差分

ナビゲーションに移動 検索に移動
154 バイト追加 、 2018年3月20日 (火) 08:44
158行目: 158行目:  
 H4受容体を介して、[[マスト細胞]]、[[好酸球]]の遊走を引き起こす。炎症、アレルギー反応に関与する。
 
 H4受容体を介して、[[マスト細胞]]、[[好酸球]]の遊走を引き起こす。炎症、アレルギー反応に関与する。
   −
== ヒスタミン神経系と中枢機能 ==
+
== ヒスタミン神経系 ==
 [[ヒスタミンニューロン細胞体]]は、[[視床下部乳頭体]](tuberomamillary nucleus)に集まっている。E1, E2, E3, E4, E5の5つの[[亜核]]に分類されている<ref><pubmed>14656302</pubmed></ref><ref>'''千葉政一, 森脇千夏, 伊奈啓輔, 藤倉義久'''<br>摂食と肥満における視床下部神経ヒスタミンの役割<br>''創薬へ向けて 日本薬理学雑誌: 147:48-55 '':2016</ref>[27,28]。そこから脳内の各部位に投射している<ref><pubmed>12563283</pubmed></ref><ref name=Haas2008><pubmed>18626069</pubmed></ref>[29,30]。[[大脳皮質]]、[[扁桃体]]、[[黒質]]、[[線条体]]、[[海馬]]、[[視床]]、[[視床下部]]、[[小脳]]、[[脳幹部]]、[[脊髄]]などである。ヒスタミン神経の終末部位は[[バリコシティ]](varicosity)と呼ばれるこぶ上の膨らみを多数形成し、そこの[[シナプス小胞]]からヒスタミンが遊離される。密接なシナプスの形成は殆ど見られない。
+
=== 解剖学的特徴 ===
 +
 [[ヒスタミンニューロン細胞体]]は、[[視床下部]][[乳頭体]](tuberomamillary nucleus)に集まっている。E1, E2, E3, E4, E5の5つの[[亜核]]に分類されている<ref><pubmed>14656302</pubmed></ref><ref>'''千葉政一, 森脇千夏, 伊奈啓輔, 藤倉義久'''<br>摂食と肥満における視床下部神経ヒスタミンの役割<br>''創薬へ向けて 日本薬理学雑誌: 147:48-55 '':2016</ref>[27,28]。そこから脳内の各部位に投射している<ref><pubmed>12563283</pubmed></ref><ref name=Haas2008><pubmed>18626069</pubmed></ref>[29,30]。[[大脳皮質]]、[[扁桃体]]、[[黒質]]、[[線条体]]、[[海馬]]、[[視床]]、[[視床下部]]、[[小脳]]、[[脳幹部]]、[[脊髄]]などである。ヒスタミン神経の終末部位は[[バリコシティ]](varicosity)と呼ばれるこぶ上の膨らみを多数形成し、そこの[[シナプス小胞]]からヒスタミンが遊離される。密接なシナプスの形成は殆ど見られない。
   −
 ヒスタミンニューロンに発現している受容体として、GABA<sub>A</sub> 受容体、GABA<sub>B</sub> 受容体、nACh receptor、5-HT2 receptor、AMPA receptor、NMDA receptor、orexin receptor、TRH receptor、glycine receptor、P2X receptor、P2Y receptor、galanin receptorが判っている<ref name=Haas2008/>[30]。
+
 ヒスタミンニューロンに発現している受容体として、GABA<sub>A</sub>受容体、[[GABAB受容体|GABA<sub>B</sub>受容体]]、[[ニコチン性アセチルコリン受容体]]、セロトニン[[5-HT2受容体]]、[[AMPA型グルタミン酸受容体]]、NMDA型グルタミン酸受容体、[[オレキシン受容体]]、[[TRH受容体]]、[[グリシン受容体]]、[[P2X受容体]]、[[P2Y受容体]]、[[ガラニン受容体]]が判っている<ref name=Haas2008/>[30]。
    
 ヒスタミンニューロンは[[自発発火]]をしている<ref name=Haas2008/> [30]。主な投射先である視床下部において、ヒスタミン遊離量は活動期に多く、休息期に少ないという[[日内リズム]]を示す<ref><pubmed>1313592</pubmed></ref>[31]。
 
 ヒスタミンニューロンは[[自発発火]]をしている<ref name=Haas2008/> [30]。主な投射先である視床下部において、ヒスタミン遊離量は活動期に多く、休息期に少ないという[[日内リズム]]を示す<ref><pubmed>1313592</pubmed></ref>[31]。
169行目: 170行目:  
 H1受容体は、主として視床下部、脳幹、視床、大脳皮質に発現が見られ、H2受容体は、[[大脳基底核]]、扁桃体、海馬、大脳皮質に発現が見られる<ref name=Haas2008/>[30]。H3受容体は各種の神経系のシナプス前膜に存在し、ヒスタミンの他、[[アセチルコリン]]、[[セロトニン]]、[[ノルアドレナリン]]、[[ドーパミン]]、[[グルタミン酸]]、[[GABA]]の遊離を抑制する。
 
 H1受容体は、主として視床下部、脳幹、視床、大脳皮質に発現が見られ、H2受容体は、[[大脳基底核]]、扁桃体、海馬、大脳皮質に発現が見られる<ref name=Haas2008/>[30]。H3受容体は各種の神経系のシナプス前膜に存在し、ヒスタミンの他、[[アセチルコリン]]、[[セロトニン]]、[[ノルアドレナリン]]、[[ドーパミン]]、[[グルタミン酸]]、[[GABA]]の遊離を抑制する。
    +
=== 機能 ===
 
 ヒスタミンの中枢機能は、2つに大別される。
 
 ヒスタミンの中枢機能は、2つに大別される。
 +
 
# 脳内各ニューロンに存在するH1受容体、あるいはH2受容体刺激を介した作用
 
# 脳内各ニューロンに存在するH1受容体、あるいはH2受容体刺激を介した作用
 
#ニューロン終末部位のH3受容体に作用し、ヒスタミン、ドーパミン、ノルアドレナリン、セロトニンなどの遊離抑制による作用
 
#ニューロン終末部位のH3受容体に作用し、ヒスタミン、ドーパミン、ノルアドレナリン、セロトニンなどの遊離抑制による作用
175行目: 178行目:  
 H1受容体、H2受容体を介した機能としては、[[睡眠]]・[[覚醒]]<ref><pubmed>21318261</pubmed></ref>[33]、[[学習記憶]]<ref><pubmed>28838882</pubmed></ref>[34]、[[食欲調節]]<ref><pubmed>16584790</pubmed></ref>[35]などがある。これらの機能を担う神経回路の特定のニューロンに、H1受容体、あるいはH2受容体が発現していて、ヒスタミンが作用することによりニューロン活動を調節(modulate)していると考えられる。
 
 H1受容体、H2受容体を介した機能としては、[[睡眠]]・[[覚醒]]<ref><pubmed>21318261</pubmed></ref>[33]、[[学習記憶]]<ref><pubmed>28838882</pubmed></ref>[34]、[[食欲調節]]<ref><pubmed>16584790</pubmed></ref>[35]などがある。これらの機能を担う神経回路の特定のニューロンに、H1受容体、あるいはH2受容体が発現していて、ヒスタミンが作用することによりニューロン活動を調節(modulate)していると考えられる。
   −
 H3受容体を介した機能としては、各種伝達物質の遊離調節によるものが考えられる。H3受容体がもともとconstitutive activityが高い受容体であることを考えると、正常時は脳全般の活動を大まかに調節していると考えてよい。むしろ、H3受容体拮抗薬(インバースアゴニスト)の作用が重要であり、各種伝達物質の遊離量を増やすことで、種々の病態の改善が期待できる<ref name=Leurs2011><pubmed>21414671</pubmed></ref><ref name=Vohora2012><pubmed> 23109919</pubmed></ref>[36,37]。
+
 H3受容体を介した機能としては、各種伝達物質の遊離調節によるものが考えられる。H3受容体がもともと恒常的活性が高い受容体であることを考えると、正常時は脳全般の活動を大まかに調節していると考えてよい。むしろ、H3受容体逆作動薬の作用が重要であり、各種伝達物質の遊離量を増やすことで、種々の病態の改善が期待できる<ref name=Leurs2011><pubmed>21414671</pubmed></ref><ref name=Vohora2012><pubmed> 23109919</pubmed></ref>[36,37]。
    
== 精神疾患との関連 ==
 
== 精神疾患との関連 ==

案内メニュー