「位置情報」の版間の差分

ナビゲーションに移動 検索に移動
35行目: 35行目:
'''C.''' モルフォゲン(Shh)の濃度が徐々に上昇していきながらパターンが形成されていく様子。<br>
'''C.''' モルフォゲン(Shh)の濃度が徐々に上昇していきながらパターンが形成されていく様子。<br>
(A)は<ref name=Ribes2009 /><ref name=Alaynick2011 />11、13を、(B,C)は<ref name =Balaskas2012 />18を元に作成した。]]
(A)は<ref name=Ribes2009 /><ref name=Alaynick2011 />11、13を、(B,C)は<ref name =Balaskas2012 />18を元に作成した。]]
 モルフォゲンの動的な濃度勾配の変化がよく解析されているのは、[[脊髄神経管]]の断面([[背腹軸]])における[[シグナル分子]]と領域決定の関係についてである。[[胚]]発生期の神経管には背腹軸に沿って多数の[[神経前駆領域]]、[[神経領域]]が出現する<ref name=Ribes2009><pubmed>20066087</pubmed></ref><ref><pubmed> 22821665</pubmed></ref>11,12 。('''図2A''')はその様子を模式的に表したもので、マウス10.5-11.5日胚、ニワトリ4-5日胚の脊髄レベルの神経管の断面を作成するとほぼ同様の様子が観察される。図中のdP1-dP6、p0-p3、pMNの各領域にはそれぞれ特有の性質を持つ神経前駆細胞が配置される。各前駆領域の細胞はさらに分化して、それぞれの前駆領域に対応する機能性の[[神経細胞]](ニューロン)を産出する(dI1-dI6、V0-V3、MN:各神経細胞がもつ性質については13<ref name=Alaynick2011><pubmed>21729788</pubmed></ref>を参照)。
 モルフォゲンの動的な濃度勾配の変化がよく解析されているのは、[[脊髄神経管]]の断面([[背腹軸]])における[[シグナル分子]]と領域決定の関係についてである。[[胚]]発生期の神経管には背腹軸に沿って多数の[[神経前駆領域]]、[[神経領域]]が出現する<ref name=Ribes2009><pubmed>20066087</pubmed></ref><ref><pubmed> 22821665</pubmed></ref>11,12 '''図2A'''はその様子を模式的に表したもので、マウス10.5-11.5日胚、ニワトリ4-5日胚の脊髄レベルの神経管の断面を作成するとほぼ同様の様子が観察される。図中のdP1-dP6、p0-p3、pMNの各領域にはそれぞれ特有の性質を持つ神経前駆細胞が配置される。各前駆領域の細胞はさらに分化して、それぞれの前駆領域に対応する機能性の[[神経細胞]](ニューロン)を産出する(dI1-dI6、V0-V3、MN:各神経細胞がもつ性質については13<ref name=Alaynick2011><pubmed>21729788</pubmed></ref>を参照)。


 個々の領域を分子レベルで特徴付けることができるのは、領域特異的に発現する[[ホメオボックス]]型または[[bHLH型転写因子]]が同定されているためである(同定されている転写因子の一部を'''図2A'''に掲載した:詳細については13<ref name=Alaynick2011 />を参照)。
 個々の領域を分子レベルで特徴付けることができるのは、領域特異的に発現する[[ホメオボックス]]型または[[bHLH型転写因子]]が同定されているためである(同定されている転写因子の一部を'''図2A'''に掲載した:詳細については13<ref name=Alaynick2011 />を参照)。

案内メニュー