「ゲノム編集」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
10行目: 10行目:
== ゲノム編集とは ==
== ゲノム編集とは ==
=== 原理 ===
=== 原理 ===
 ゲノム編集は、狙ったゲノム部位にDNAの二本鎖切断を起こし、その後に誘導されるDNAの修復機構を利用し、標的ゲノムの破壊・塩基置換、標的ゲノム部位への外来遺伝子の挿入([[ノックイン]])などを可能にする技術である(図1)。細胞にはDNA二本鎖切断に対する2つの主要な修復機構が存在する。一つは、非相同末端結合(non-homologous end joining, NHEJ)であり、切断された末端同士を直接連結する。NHEJによる修復は、再連結の際、ヌクレオチドの欠失(数塩基から数百塩基)・挿入(数塩基から数十塩基)を高頻度で起こすため、修復の正確性は低い。従って、DNA二本鎖切断をタンパク質のコード領域に起こし、NHEJを利用しフレームシフトを起こすことにより遺伝子機能を破壊することができる。もう一つの修復機構である相同組換えは、外部から導入した鋳型DNAを利用して正確な修復を行う。鋳型DNAに塩基置換や他の遺伝子を挿入することにより、標的ゲノムの塩基置換や外来遺伝子のノックインをすることができる。さらに、ゲノム編集技術を用いると、同一染色体上の2箇所を切断することにより、大きな欠失や逆位、異なる染色体を切断することにより、染色体転座を起こすことができ、染色体の編集も可能である。NHEJによる修復は、細胞周期を通して作動するが、相同組換えによる修復はS期からG2期にしか起こらず頻度は低い。
 ゲノム編集は、狙ったゲノム部位にDNAの二本鎖切断を起こし、その後に誘導されるDNAの修復機構を利用し、標的ゲノムの破壊・塩基置換、標的ゲノム部位への外来遺伝子の挿入([[ノックイン]])などを可能にする技術である('''図1''')。細胞にはDNA二本鎖切断に対する2つの主要な修復機構が存在する。一つは、非相同末端結合(non-homologous end joining, NHEJ)であり、切断された末端同士を直接連結する。NHEJによる修復は、再連結の際、ヌクレオチドの欠失(数塩基から数百塩基)・挿入(数塩基から数十塩基)を高頻度で起こすため、修復の正確性は低い。従って、DNA二本鎖切断をタンパク質のコード領域に起こし、NHEJを利用しフレームシフトを起こすことにより遺伝子機能を破壊することができる。もう一つの修復機構である相同組換えは、外部から導入した鋳型DNAを利用して正確な修復を行う。鋳型DNAに塩基置換や他の遺伝子を挿入することにより、標的ゲノムの塩基置換や外来遺伝子のノックインをすることができる。
 
 さらに、ゲノム編集技術を用いると、同一染色体上の2箇所を切断することにより、大きな欠失や逆位、異なる染色体を切断することにより、染色体転座を起こすことができ、染色体の編集も可能である。NHEJによる修復は、細胞周期を通して作動するが、相同組換えによる修復はS期からG2期にしか起こらず頻度は低い。


=== ツール ===
=== ツール ===
 ゲノム編集にとって最も重要なステップは、ゲノム上の狙った塩基配列にDNA二本鎖切断を導入することである。そのために、[[ZFN]](zinc-finger nuclease)、[[TALEN]](transcription activator-like effector nuclease)、[[CRISPR/Cas9]](clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated proteins(Cas)、以下CRISPR/Casと略)などの部位特異的ヌクレアーゼを用いる(図2)。1996年に報告されたZFNと2010年に報告されたTALENは、DNA二本鎖切断活性を持つFokIヌクレアーゼにDNA結合タンパク質のDNA結合ドメインを融合した一対の人工ヌクレアーゼを用い、狙った標的部位にDNA二本鎖切断を導入する。第一世代のZFNは、DNA結合ドメインとしてzinc fingerを持つ人工ヌクレアーゼで、1つのzinc fingerは3塩基を認識するので、3〜6個のzinc fingerを持つZFNは9〜18bp(base pair)に特異的に結合し、一対で18〜36bpの特異性でDNA二本鎖切断を導入する。第二世代のTALENは、DNA結合ドメインとして植物病原細菌のXanthomonas属が有するTALEを持つ人工ヌクレアーゼである。TALEのDNA結合ドメインは、1塩基を認識する34個のアミノ酸が一単位となり、それを15〜20単位持つTALENをセンス鎖、アンチセンス鎖それぞれに作製し、狙った標的部位にDNA二本鎖切断を導入する。第三世代のCRISPR/Casは、単独でDNA二本鎖切断活性を持つCasヌクレアーゼと標的配列特異的一本鎖ガイドRNAとの複合体を用い、狙った塩基配列にDNA二本鎖切断を導入する。この中で、2012年に発表されたCRISPR/Cas9は、その利便性、高効率、汎用性から、わずか1年の間に世界中で使われるゲノム編集の標準技術となった<ref><pubmed>24665839</pubmed></ref>[2]。
 ゲノム編集にとって最も重要なステップは、ゲノム上の狙った塩基配列にDNA二本鎖切断を導入することである。そのために、[[ZFN]](zinc-finger nuclease)、[[TALEN]](transcription activator-like effector nuclease)、[[CRISPR/Cas9]](clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated proteins(Cas)、以下CRISPR/Casと略)などの部位特異的ヌクレアーゼを用いる('''図2''')。1996年に報告されたZFNと2010年に報告されたTALENは、DNA二本鎖切断活性を持つFokIヌクレアーゼにDNA結合タンパク質のDNA結合ドメインを融合した一対の人工ヌクレアーゼを用い、狙った標的部位にDNA二本鎖切断を導入する。
 
 第一世代のZFNは、DNA結合ドメインとしてzinc fingerを持つ人工ヌクレアーゼで、1つのzinc fingerは3塩基を認識するので、3〜6個のzinc fingerを持つZFNは9〜18bp(base pair)に特異的に結合し、一対で18〜36bpの特異性でDNA二本鎖切断を導入する。
 
 第二世代のTALENは、DNA結合ドメインとして植物病原細菌のXanthomonas属が有するTALEを持つ人工ヌクレアーゼである。TALEのDNA結合ドメインは、1塩基を認識する34個のアミノ酸が一単位となり、それを15〜20単位持つTALENをセンス鎖、アンチセンス鎖それぞれに作製し、狙った標的部位にDNA二本鎖切断を導入する。第三世代のCRISPR/Casは、単独でDNA二本鎖切断活性を持つCasヌクレアーゼと標的配列特異的一本鎖ガイドRNAとの複合体を用い、狙った塩基配列にDNA二本鎖切断を導入する。
 
 この中で、2012年に発表されたCRISPR/Cas9は、その利便性、高効率、汎用性から、わずか1年の間に世界中で使われるゲノム編集の標準技術となった<ref><pubmed>24665839</pubmed></ref>[2]。


== CRISPR/Casシステム ==
== CRISPR/Casシステム ==
 CRISPR/Casシステムは、真正細菌や古細菌の獲得免疫系として発見された。この獲得免疫システムの標的は、細菌に感染するファージのDNAやRNAであり、異物として認識されたファージ由来のDNAやRNAは分解され除去される。CRISPR/Casシステムによる異物除去の過程は3つのステップ(adaptation, expression, interference)により行われる。侵入した外来DNAは、細菌内で断片化され、その一部が細菌のゲノム中のCRISPR領域に挿入される(adaptation)。次に外来DNAが侵入した際に、CRISPR領域が転写されてpre-CRISPR RNAが生じ、プロセシングを受けCRISPR RNA (crRNA:外来DNA断片と相補的配列を持つ)が生成される(expression)。プロセシングを受けたcrRNAはCasタンパク質と複合体を形成し、外来DNAやRNAと相補的に結合し、それらを切断する(interference)。CRISPR/Casシステムは、システムを構成しているCasタンパク質群の違いにより2つのクラスに分類される。クラス1のCRISPR/Casシステムには複数のCasが、クラス2のCRISPR/Casシステムには単一のCasが関与する。さらに作用機序の違いにより、クラス1はⅠ型、Ⅲ型、Ⅳ型に分類され、クラス2はⅡ型、Ⅴ型、Ⅵ型に分類される。Casタンパク質—crRNA複合体は、DNAだけではなくRNAも標的にし、DNAおよびRNAの編集が可能である。
 CRISPR/Casシステムは、真正細菌や古細菌の獲得免疫系として発見された。この獲得免疫システムの標的は、細菌に感染するファージのDNAやRNAであり、異物として認識されたファージ由来のDNAやRNAは分解され除去される。CRISPR/Casシステムによる異物除去の過程は3つのステップ(adaptation, expression, interference)により行われる。侵入した外来DNAは、細菌内で断片化され、その一部が細菌のゲノム中のCRISPR領域に挿入される(adaptation)。次に外来DNAが侵入した際に、CRISPR領域が転写されてpre-CRISPR RNAが生じ、プロセシングを受けCRISPR RNA (crRNA:外来DNA断片と相補的配列を持つ)が生成される(expression)。プロセシングを受けたcrRNAはCasタンパク質と複合体を形成し、外来DNAやRNAと相補的に結合し、それらを切断する(interference)
 
 CRISPR/Casシステムは、システムを構成しているCasタンパク質群の違いにより2つのクラスに分類される。クラス1のCRISPR/Casシステムには複数のCasが、クラス2のCRISPR/Casシステムには単一のCasが関与する。さらに作用機序の違いにより、クラス1はⅠ型、Ⅲ型、Ⅳ型に分類され、クラス2はⅡ型、Ⅴ型、Ⅵ型に分類される。Casタンパク質—crRNA複合体は、DNAだけではなくRNAも標的にし、DNAおよびRNAの編集が可能である。


=== DNAの編集 ===
=== DNAの編集 ===
==== CRISPR/Cas9システム ====
==== CRISPR/Cas9システム ====
 CRISPR/Cas9システムは、クラス2のⅡ型に分類されるCRISPR/Casシステムであり、CRISPR RNA (crRNA:外来DNA断片と相補的配列を持つ)、trans-activating crRNA (tracrRNA:crRNAの外来DNAと相補的配列以外の部分に結合し、Cas9とcrRNAの複合体形成に必要である)、Cas9タンパク質の3種類の要素から成っている(図2c)。Streptococcus pyogenes株由来のCas9タンパク質は、標的ゲノム配列の下流にある3つの塩基;N(G, A, T, or C)GGをPMA配列(Proto-spacer Adjacent Motif)として認識し、その3塩期上流を切断する。現在普及しているシステムは、標的DNAに対して相補的配列を持つcrRNAの3’末端にtracrRNAを連結させたsingle guide RNA (sgRNA)とCas9を発現させることにより、ゲノムDNA上の狙った部位にDNA二本鎖切断を導入する。約100塩基のsgRNAのうち、DNA二本鎖切断の標的部位を規定するのは標的部位と相補的配列を持つ20塩基のみである。従って、CRISPR/Cas9システムをゲノム編集ツールとして利用する場合、標的ごとに変える必要があるのはわずか20塩基のみであり、それ以外の塩基配列およびCas9はすべて共通である。CRISPR/Cas9システムは、ガイドRNAの作製の簡便さ、ガイドRNAを増やすことにより複数遺伝子の同時編集が可能なことから、誰もが使うことのできるゲノム編集ツールとして急速に普及した。2012年の最初の発表以来、大腸菌、ヒト細胞からゼブラフィッシュに至る多くの細胞・生物種への応用が報告されている<ref><pubmed> 25430774</pubmed></ref>[3]。いまやヒトやサルを含むあらゆる動物個体、植物、微生物への利用が急速に広がっている。
 CRISPR/Cas9システムは、クラス2のⅡ型に分類されるCRISPR/Casシステムであり、CRISPR RNA (crRNA:外来DNA断片と相補的配列を持つ)、trans-activating crRNA (tracrRNA:crRNAの外来DNAと相補的配列以外の部分に結合し、Cas9とcrRNAの複合体形成に必要である)、Cas9タンパク質の3種類の要素から成っている('''図2c''')。Streptococcus pyogenes株由来のCas9タンパク質は、標的ゲノム配列の下流にある3つの塩基;N(G, A, T, or C)GGをPMA配列(Proto-spacer Adjacent Motif)として認識し、その3塩期上流を切断する。現在普及しているシステムは、標的DNAに対して相補的配列を持つcrRNAの3’末端にtracrRNAを連結させたsingle guide RNA (sgRNA)とCas9を発現させることにより、ゲノムDNA上の狙った部位にDNA二本鎖切断を導入する。約100塩基のsgRNAのうち、DNA二本鎖切断の標的部位を規定するのは標的部位と相補的配列を持つ20塩基のみである。従って、CRISPR/Cas9システムをゲノム編集ツールとして利用する場合、標的ごとに変える必要があるのはわずか20塩基のみであり、それ以外の塩基配列およびCas9はすべて共通である。CRISPR/Cas9システムは、ガイドRNAの作製の簡便さ、ガイドRNAを増やすことにより複数遺伝子の同時編集が可能なことから、誰もが使うことのできるゲノム編集ツールとして急速に普及した。2012年の最初の発表以来、大腸菌、ヒト細胞からゼブラフィッシュに至る多くの細胞・生物種への応用が報告されている<ref><pubmed> 25430774</pubmed></ref>[3]。いまやヒトやサルを含むあらゆる動物個体、植物、微生物への利用が急速に広がっている。


 ゲノム編集ツールとしてのCRISPR/Cas9システムの大きな問題点は、「オフターゲット」と「PAM配列の制約」である。オフターゲットとは、標的でないゲノム部位のDNA配列を変えてしまうことである。オフターゲットの起こる頻度は、細胞種・標的遺伝子座・ガイドRNAなどにより大きく変化する。オフターゲットを回避する方法として、ダブルニッキング法が考案されている。天然型のCas9は2つのヌクレアーゼドメインを持っているが、その一方をアミノ酸置換により不活性化した一本鎖切断型Cas9(Cas9 nickase)を用いる方法が考案されている<ref><pubmed>23992846</pubmed></ref> <ref><pubmed>27208701</pubmed></ref>[4][5]。標的部位に近接したセンス鎖、アンチセンス鎖に1対のCRISPR/Cas9 nickaseが結合した際にのみDNA二本鎖切断が誘導されるので、オフターゲットの起こる頻度は少なくなる。最近、Cas9 nickaseを用いた標的部位でのゲノム編集効率は、天然型のCas9編集効率と同等かそれ以上であることが報告されている<ref><pubmed> 29584876</pubmed></ref>[6]。また、CRISPR/Cas9を用いて作製された遺伝子改変マウスにおけるオフターゲットの頻度は、全ゲノムレベルで解析した例が少なく確定的ではないが、当初報告されたよりは少ないと考えられている<ref>CRISPR off-targets: a reassessment.<br>
 ゲノム編集ツールとしてのCRISPR/Cas9システムの大きな問題点は、「オフターゲット」と「PAM配列の制約」である。オフターゲットとは、標的でないゲノム部位のDNA配列を変えてしまうことである。オフターゲットの起こる頻度は、細胞種・標的遺伝子座・ガイドRNAなどにより大きく変化する。オフターゲットを回避する方法として、ダブルニッキング法が考案されている。天然型のCas9は2つのヌクレアーゼドメインを持っているが、その一方をアミノ酸置換により不活性化した一本鎖切断型Cas9(Cas9 nickase)を用いる方法が考案されている<ref><pubmed>23992846</pubmed></ref> <ref><pubmed>27208701</pubmed></ref>[4][5]。標的部位に近接したセンス鎖、アンチセンス鎖に1対のCRISPR/Cas9 nickaseが結合した際にのみDNA二本鎖切断が誘導されるので、オフターゲットの起こる頻度は少なくなる。最近、Cas9 nickaseを用いた標的部位でのゲノム編集効率は、天然型のCas9編集効率と同等かそれ以上であることが報告されている<ref><pubmed> 29584876</pubmed></ref>[6]。また、CRISPR/Cas9を用いて作製された遺伝子改変マウスにおけるオフターゲットの頻度は、全ゲノムレベルで解析した例が少なく確定的ではないが、当初報告されたよりは少ないと考えられている<ref>CRISPR off-targets: a reassessment.<br>
Nature Methods. 2018, 15(4):229-30. doi:10.1038/nmeth.4664</ref> <ref>'''Schaefer KA, Darbo BW, Colgan DF, Tsang SH, Bassuk AG, Mahajan VB.'''<br>Corrigendum and follow-up: Whole genome sequencing of multiple CRISPR-edited mouse lines suggests no excess mutations.<br>bioRxiv. 2017, Posted Jun. 23. Doi: http://dx.org/10.1101/154450</ref> [7][8]。現在ゲノム編集で最もよく使われているSpCas9は化膿レンサ球菌由来であり、DNA二本鎖切断の部位を決めるには標的DNA配列の下流に隣接するNGGというPAM配列が必要である。このPAM配列の制約により、ゲノムの全ての場所を編集できないという制限があった。David Liuのグループは、PACE (phage-assisted continuous evolution)を利用して、NG、GAAおよびGATをPAMとするSpCas9変異体 (xCas9)の作成に成功した<ref><pubmed>29512652</pubmed></ref>[9]。xCas9は哺乳類細胞において、最も広範なPAM配列を認識する制約の少ないCasである。さらに機序は不明であるが、xCas9はオフターゲットの頻度も抑制し、Cas9の主要な欠点であるオフターゲットとPAM配列の制約の2つを回避できる理想的なゲノム編集ツールである。
Nature Methods. 2018, 15(4):229-30. doi:10.1038/nmeth.4664</ref> <ref>'''Schaefer KA, Darbo BW, Colgan DF, Tsang SH, Bassuk AG, Mahajan VB.'''<br>Corrigendum and follow-up: Whole genome sequencing of multiple CRISPR-edited mouse lines suggests no excess mutations.<br>bioRxiv. 2017, Posted Jun. 23. Doi: http://dx.org/10.1101/154450</ref> [7][8]
 
 在ゲノム編集で最もよく使われているSpCas9は化膿レンサ球菌由来であり、DNA二本鎖切断の部位を決めるには標的DNA配列の下流に隣接するNGGというPAM配列が必要である。このPAM配列の制約により、ゲノムの全ての場所を編集できないという制限があった。David Liuのグループは、PACE (phage-assisted continuous evolution)を利用して、NG、GAAおよびGATをPAMとするSpCas9変異体 (xCas9)の作成に成功した<ref><pubmed>29512652</pubmed></ref>[9]。xCas9は哺乳類細胞において、最も広範なPAM配列を認識する制約の少ないCasである。さらに機序は不明であるが、xCas9はオフターゲットの頻度も抑制し、Cas9の主要な欠点であるオフターゲットとPAM配列の制約の2つを回避できる理想的なゲノム編集ツールである。


==== CRISPR/Cpf1システム ====
==== CRISPR/Cpf1システム ====
43行目: 55行目:
== CRISPR/Casシステムの神経科学への応用 ==
== CRISPR/Casシステムの神経科学への応用 ==
=== 細胞への応用[19] ===
=== 細胞への応用[19] ===
 CRISPR/Casシステムを細胞に適用することにより、遺伝子の機能を欠損させたり亢進させたりすることが簡単にでき、様々な細胞機能に関与する遺伝子群をゲノムワイドに検索できる。
 CRISPR/Casシステムを細胞に適用することにより、遺伝子の機能を欠損させたり亢進させたりすることが簡単にでき、様々な細胞機能に関与する遺伝子群をゲノムワイドに検索できる。<ref><pubmed>27606440</pubmed></ref>
====ゲノム編集 ====
====ゲノム編集 ====
 神経細胞などの初代培養細胞は、一般的にCRISPR/Casシステムによるゲノム編集効率は低く、それぞれの細胞種による最適化が必要である。ES細胞やiPS細胞におけるCRISPR/Casシステムを用いたゲノム編集の効率化は、多くの実績がある。従って、ゲノム編集したES細胞やiPS細胞を用い、それらから分化させた神経細胞の機能を解析する方法も有効である。
 神経細胞などの初代培養細胞は、一般的にCRISPR/Casシステムによるゲノム編集効率は低く、それぞれの細胞種による最適化が必要である。ES細胞やiPS細胞におけるCRISPR/Casシステムを用いたゲノム編集の効率化は、多くの実績がある。従って、ゲノム編集したES細胞やiPS細胞を用い、それらから分化させた神経細胞の機能を解析する方法も有効である。
 また、CRISPR/Casシステムの開発により、疾患原因遺伝子の変異以外は遺伝的に同一(isogenic)なiPS細胞を作成することが効率化された。iPS細胞におけるゲノム編集は、従来の相同組換えを用いた方法では変異導入効率が低く、クローン化に多大な労力が必要とされた。しかし、CRISPR/Casシステムの開発により、iPS細胞のゲノム編集がより効率化され、単純な遺伝子欠損に加え、疾患の原因と考えられる様々な変異(1塩基置換や大きな欠失など)を導入することが可能になった。従って、樹立された患者iPS細胞の疾患原因遺伝子の変異を正常に戻したり、健常人から樹立したiPS細胞に疾患の原因遺伝子変異を導入することによりisogenicな疾患モデル細胞を作成することが可能になった[20]。今後、isogenicなiPS細胞を用いることにより、疾患研究が加速すると期待される。
 
 また、CRISPR/Casシステムの開発により、疾患原因遺伝子の変異以外は遺伝的に同一(isogenic)なiPS細胞を作成することが効率化された。iPS細胞におけるゲノム編集は、従来の相同組換えを用いた方法では変異導入効率が低く、クローン化に多大な労力が必要とされた。しかし、CRISPR/Casシステムの開発により、iPS細胞のゲノム編集がより効率化され、単純な遺伝子欠損に加え、疾患の原因と考えられる様々な変異(1塩基置換や大きな欠失など)を導入することが可能になった。従って、樹立された患者iPS細胞の疾患原因遺伝子の変異を正常に戻したり、健常人から樹立したiPS細胞に疾患の原因遺伝子変異を導入することによりisogenicな疾患モデル細胞を作成することが可能になった<ref><pubmed>26059412</pubmed></ref>[20]。今後、isogenicなiPS細胞を用いることにより、疾患研究が加速すると期待される。


==== 転写制御 ====
==== 転写制御 ====
 CRISPR/Casシステムは、RNA誘導型ヌクレアーゼであり、ガイドRNAが標的ゲノム部位にCasを誘導する。Casに点変異を入れ、ガイドRNAとは複合体を形成できるがヌクレアーゼ活性を持たないCas を作成することができる。この不活性型Cas(dCas9やdCpf1)に、様々な活性を持つ蛋白質を融合することにより、融合蛋白質を標的ゲノム部位に誘導することができる。転写活性化因子Vp64あるいは転写抑制因子KRABをdCas9やdCpf1と融合し、標的ゲノム部位と相補的配列を持つガイドRNAと伴に細胞に導入すると、標的遺伝子の転写を活性化あるいは抑制することができ、遺伝子の機能を解析することができる[21][22]。しかし、一つのdCasに対し一つの転写調節因子を結合させても遺伝子転写制御は不十分であり、通常は、dCasまたはガイドRNAに複数の転写調節因子を付加する系が使われている[23]。この系は、一つの細胞内の複数の遺伝子の転写を同時に制御することができる。
 CRISPR/Casシステムは、RNA誘導型ヌクレアーゼであり、ガイドRNAが標的ゲノム部位にCasを誘導する。Casに点変異を入れ、ガイドRNAとは複合体を形成できるがヌクレアーゼ活性を持たないCas を作成することができる。この不活性型Cas(dCas9やdCpf1)に、様々な活性を持つ蛋白質を融合することにより、融合蛋白質を標的ゲノム部位に誘導することができる。転写活性化因子Vp64あるいは転写抑制因子KRABをdCas9やdCpf1と融合し、標的ゲノム部位と相補的配列を持つガイドRNAと伴に細胞に導入すると、標的遺伝子の転写を活性化あるいは抑制することができ、遺伝子の機能を解析することができる<ref><pubmed></pubmed></ref> <ref><pubmed>29235474]</pubmed></ref>[21][22]。しかし、一つのdCasに対し一つの転写調節因子を結合させても遺伝子転写制御は不十分であり、通常は、dCasまたはガイドRNAに複数の転写調節因子を付加する系が使われている<ref><pubmed>27248712</pubmed></ref>[23]。この系は、一つの細胞内の複数の遺伝子の転写を同時に制御することができる。


==== エピゲノム制御 ====
==== エピゲノム制御 ====
 ヒストンの修飾やDNAのメチル化などのエピゲノミックな修飾は、脳形成や神経可塑性において重要な役割をもち、さらに、精神神経疾患の発症に関与することが報告されている。CRISPR/Casシステムを用いることにより、従来困難であった特定のゲノム領域のエピゲノミックな修飾状態を改変する「エピゲノム編集」が可能になった[24]。ヒストンはメチル化やアセチル化などの翻訳後修飾を受け、転写の制御やクロマチン濃縮などに関与する。dCas9にヒストン修飾を導入する酵素(ヒストンアセチル基転移酵素、ヒストン脱アセチル化酵素、リジンメチル基転移酵素、リジン脱メチル化酵素など)を融合させた人工タンパク質と標的ゲノム部位と相補的配列を持つガイドRNAを細胞に導入すると、標的遺伝子のエピゲノミックな修飾状態を改変できる。また、DNAを構成する4種類の塩基のなかでシトシンのみがメチル基の付加・除去を受け、転写を制御している。dCas9にDNAメチル化を制御する酵素(DNAメチル化酵素やDNA脱メチル化酵素)を融合させた人工タンパク質と標的ゲノム部位と相補的配列を持つガイドRNAを細胞に導入すると、標的ゲノム領域のDNAのメチル化状態を改変できる。しかし、一つのdCas9に対し一つのエピゲノム修飾因子を結合させてもエピゲノム制御は不十分であり、通常は、dCas9またはガイドRNAに複数のエピゲノム修飾因子を付加する系が使われている[25]。Rudolf Jaenischのグループは、dCas9にTet1(シトシンのメチル基を除去する酵素)を融合させた人工タンパク質を用い、Fragile X症候群のiPS細胞モデルの治療に成功している[26]。Fragile X症候群では、FMR1遺伝子の転写開始より少し上流にあるCGGの繰り返し配列が増加しメチル化が促進され、FMR1遺伝子の発現が抑制されている。Fragile X症候群の患者さんから作成したiPS細胞に、FMR1遺伝子の転写開始より少し上流を標的にしたガイドRNAとdCas9-tet1を導入し、CGGの繰り返し配列のメチル基を外し、FMR1遺伝子の発現を回復させることに成功した。FMR1遺伝子の発現が回復した患者iPS細胞を神経細胞に分化させると、神経細胞の過活動が正常に戻った。
 ヒストンの修飾やDNAのメチル化などのエピゲノミックな修飾は、脳形成や神経可塑性において重要な役割をもち、さらに、精神神経疾患の発症に関与することが報告されている。CRISPR/Casシステムを用いることにより、従来困難であった特定のゲノム領域のエピゲノミックな修飾状態を改変する「エピゲノム編集」が可能になった<ref><pubmed>28985525</pubmed></ref>[24]。ヒストンはメチル化やアセチル化などの翻訳後修飾を受け、転写の制御やクロマチン濃縮などに関与する。dCas9にヒストン修飾を導入する酵素(ヒストンアセチル基転移酵素、ヒストン脱アセチル化酵素、リジンメチル基転移酵素、リジン脱メチル化酵素など)を融合させた人工タンパク質と標的ゲノム部位と相補的配列を持つガイドRNAを細胞に導入すると、標的遺伝子のエピゲノミックな修飾状態を改変できる。また、DNAを構成する4種類の塩基のなかでシトシンのみがメチル基の付加・除去を受け、転写を制御している。dCas9にDNAメチル化を制御する酵素(DNAメチル化酵素やDNA脱メチル化酵素)を融合させた人工タンパク質と標的ゲノム部位と相補的配列を持つガイドRNAを細胞に導入すると、標的ゲノム領域のDNAのメチル化状態を改変できる。しかし、一つのdCas9に対し一つのエピゲノム修飾因子を結合させてもエピゲノム制御は不十分であり、通常は、dCas9またはガイドRNAに複数のエピゲノム修飾因子を付加する系が使われている<ref><pubmed></pubmed></ref>[25]。Rudolf Jaenischのグループは、dCas9にTet1(シトシンのメチル基を除去する酵素)を融合させた人工タンパク質を用い、Fragile X症候群のiPS細胞モデルの治療に成功している[26]。Fragile X症候群では、FMR1遺伝子の転写開始より少し上流にあるCGGの繰り返し配列が増加しメチル化が促進され、FMR1遺伝子の発現が抑制されている。Fragile X症候群の患者さんから作成したiPS細胞に、FMR1遺伝子の転写開始より少し上流を標的にしたガイドRNAとdCas9-tet1を導入し、CGGの繰り返し配列のメチル基を外し、FMR1遺伝子の発現を回復させることに成功した。FMR1遺伝子の発現が回復した患者iPS細胞を神経細胞に分化させると、神経細胞の過活動が正常に戻った。


==== RNA制御 ====
==== RNA制御 ====

案内メニュー