「ゲノム編集」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
10行目: 10行目:
== ゲノム編集とは ==
== ゲノム編集とは ==
=== 原理 ===
=== 原理 ===
[[Image:ゲノム図1.png|thumb|right|400px|'''図1. DNA二本鎖切断の修復機構を利用したゲノム編集''']]
 ゲノム編集は、狙ったゲノム部位にDNAの二本鎖切断を起こし、その後に誘導されるDNAの修復機構を利用し、標的ゲノムの破壊・塩基置換、標的ゲノム部位への外来遺伝子の挿入([[ノックイン]])などを可能にする技術である('''図1''')。細胞にはDNA二本鎖切断に対する2つの主要な修復機構が存在する。一つは、非相同末端結合(non-homologous end joining, NHEJ)であり、切断された末端同士を直接連結する。NHEJによる修復は、再連結の際、ヌクレオチドの欠失(数塩基から数百塩基)・挿入(数塩基から数十塩基)を高頻度で起こすため、修復の正確性は低い。従って、DNA二本鎖切断をタンパク質のコード領域に起こし、NHEJを利用しフレームシフトを起こすことにより遺伝子機能を破壊することができる。もう一つの修復機構である相同組換えは、外部から導入した鋳型DNAを利用して正確な修復を行う。鋳型DNAに塩基置換や他の遺伝子を挿入することにより、標的ゲノムの塩基置換や外来遺伝子のノックインをすることができる。
 ゲノム編集は、狙ったゲノム部位にDNAの二本鎖切断を起こし、その後に誘導されるDNAの修復機構を利用し、標的ゲノムの破壊・塩基置換、標的ゲノム部位への外来遺伝子の挿入([[ノックイン]])などを可能にする技術である('''図1''')。細胞にはDNA二本鎖切断に対する2つの主要な修復機構が存在する。一つは、非相同末端結合(non-homologous end joining, NHEJ)であり、切断された末端同士を直接連結する。NHEJによる修復は、再連結の際、ヌクレオチドの欠失(数塩基から数百塩基)・挿入(数塩基から数十塩基)を高頻度で起こすため、修復の正確性は低い。従って、DNA二本鎖切断をタンパク質のコード領域に起こし、NHEJを利用しフレームシフトを起こすことにより遺伝子機能を破壊することができる。もう一つの修復機構である相同組換えは、外部から導入した鋳型DNAを利用して正確な修復を行う。鋳型DNAに塩基置換や他の遺伝子を挿入することにより、標的ゲノムの塩基置換や外来遺伝子のノックインをすることができる。


15行目: 16行目:


=== ツール ===
=== ツール ===
[[Image:ゲノム図2.png|thumb|right|400px|'''図2. ゲノム編集に用いられる部位特異的ヌクレアーゼの構造'''<br>'''A.'''  ZFN<br />'''B.''' TALEN<br />'''C.'''CRISPR/Cas8]]
 ゲノム編集にとって最も重要なステップは、ゲノム上の狙った塩基配列にDNA二本鎖切断を導入することである。そのために、[[ZFN]](zinc-finger nuclease)、[[TALEN]](transcription activator-like effector nuclease)、[[CRISPR/Cas9]](clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated proteins(Cas)、以下CRISPR/Casと略)などの部位特異的ヌクレアーゼを用いる('''図2''')。1996年に報告されたZFNと2010年に報告されたTALENは、DNA二本鎖切断活性を持つFokIヌクレアーゼにDNA結合タンパク質のDNA結合ドメインを融合した一対の人工ヌクレアーゼを用い、狙った標的部位にDNA二本鎖切断を導入する。
 ゲノム編集にとって最も重要なステップは、ゲノム上の狙った塩基配列にDNA二本鎖切断を導入することである。そのために、[[ZFN]](zinc-finger nuclease)、[[TALEN]](transcription activator-like effector nuclease)、[[CRISPR/Cas9]](clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated proteins(Cas)、以下CRISPR/Casと略)などの部位特異的ヌクレアーゼを用いる('''図2''')。1996年に報告されたZFNと2010年に報告されたTALENは、DNA二本鎖切断活性を持つFokIヌクレアーゼにDNA結合タンパク質のDNA結合ドメインを融合した一対の人工ヌクレアーゼを用い、狙った標的部位にDNA二本鎖切断を導入する。


51行目: 53行目:


==== CRISPR/dCas13-ADARシステム ====
==== CRISPR/dCas13-ADARシステム ====
 Feng Zhangのグループは、失活させたCas13b(dCas13b)にRNAデアミネース(RNAのアデニン(A)をイノシン(I)に変化させる酵素,ADAR)を融合させ、標的RNAを編集できる系を確立した(REPAIR, RNA Editing for Programmable A to I Replacement、図3)<ref name=Cox2017/>[18]。この系は、RNAの変異を正常に戻すことができる。さらに、RNAを標的にした編集はオフターゲットが起きてもその影響は一過性であり、遺伝子治療としては安全性が高い。
[[Image:ゲノム図3.png|thumb|right|400px|'''図3. CRISPR/dCas13-ADARシステム''']]
 Feng Zhangのグループは、失活させたCas13b(dCas13b)にRNAデアミネース(RNAのアデニン(A)をイノシン(I)に変化させる酵素,ADAR)を融合させ、標的RNAを編集できる系を確立した(REPAIR, RNA Editing for Programmable A to I Replacement、'''図3''')<ref name=Cox2017/>[18]。この系は、RNAの変異を正常に戻すことができる。さらに、RNAを標的にした編集はオフターゲットが起きてもその影響は一過性であり、遺伝子治療としては安全性が高い。


== CRISPR/Casシステムの神経科学への応用 ==
== CRISPR/Casシステムの神経科学への応用 ==
72行目: 75行目:
=== 個体への応用 ===
=== 個体への応用 ===
==== 受精卵におけるゲノム編集 ====
==== 受精卵におけるゲノム編集 ====
[[Image:ゲノム図4.png|thumb|right|400px|'''図4. CRISPR/Cas9を用いた疾患モデルマウスの作成''']]
 従来、遺伝子改変動物は、ES細胞の相同組換えによる遺伝子改変を基盤として作成されてきた。しかし、その作成には長い時間、多大な労力、多額の費用が必要である。さらに、遺伝子改変動物の作成は、マウス等、ES細胞が樹立されているごく一部の動物種に限られていた。CRISPR/Cas9システムは、この状況を一変させた。CRISPR/Cas9システムを用いた遺伝子改変動物の作成は、標的配列に対するガイドRNA、Cas9をコードするmRNAおよびノックインの場合にはドナーDNAを受精卵に注入するだけで、受精卵内で標的遺伝子が改変され、短時間にノックアウト・ノックイン動物を得ることができる('''図4''')。さらに最近、従来の「顕微注入法」で必要とされる受精卵の単離、顕微注入、移植といった一連の作業を省略できるGONAD(Genome-editing via Oviductal Nucleic Acids Delivery)法が報告された<ref><pubmed>29482575</pubmed></ref>[27]。GONAD法では、0.7日胚(着床前)を有する妊娠雌マウスの卵管内に標的配列に対するガイドRNA、Cas9をコードするmRNAを注入し、卵管全体に対し直接電気穿孔法を行う。CRISPR/Cas9システムを用いた遺伝子改変動物の作製法は、そのきわめて迅速で簡便で高い効率性が特徴である。以下に、遺伝子欠損・塩基置換・外来遺伝子ノックイン動物の作成法を、マウスを中心に概説する。
 従来、遺伝子改変動物は、ES細胞の相同組換えによる遺伝子改変を基盤として作成されてきた。しかし、その作成には長い時間、多大な労力、多額の費用が必要である。さらに、遺伝子改変動物の作成は、マウス等、ES細胞が樹立されているごく一部の動物種に限られていた。CRISPR/Cas9システムは、この状況を一変させた。CRISPR/Cas9システムを用いた遺伝子改変動物の作成は、標的配列に対するガイドRNA、Cas9をコードするmRNAおよびノックインの場合にはドナーDNAを受精卵に注入するだけで、受精卵内で標的遺伝子が改変され、短時間にノックアウト・ノックイン動物を得ることができる('''図4''')。さらに最近、従来の「顕微注入法」で必要とされる受精卵の単離、顕微注入、移植といった一連の作業を省略できるGONAD(Genome-editing via Oviductal Nucleic Acids Delivery)法が報告された<ref><pubmed>29482575</pubmed></ref>[27]。GONAD法では、0.7日胚(着床前)を有する妊娠雌マウスの卵管内に標的配列に対するガイドRNA、Cas9をコードするmRNAを注入し、卵管全体に対し直接電気穿孔法を行う。CRISPR/Cas9システムを用いた遺伝子改変動物の作製法は、そのきわめて迅速で簡便で高い効率性が特徴である。以下に、遺伝子欠損・塩基置換・外来遺伝子ノックイン動物の作成法を、マウスを中心に概説する。


81行目: 85行目:


===== 外来遺伝子ノックインマウスの作製 =====
===== 外来遺伝子ノックインマウスの作製 =====
[[Image:ゲノム図5.png|thumb|right|400px|'''図5. クローニングフリーCRISPR/Cas9システム''']]
[[Image:ゲノム図6.png|thumb|right|400px|'''図6. PITCh法を用いた外来遺伝子のノックイン''']]
 遺伝子改変マウスの作成を容易にしたCRISPR/Cas9であるが、数kbの長い外来遺伝子のノックインマウスの作製は困難である。Rudolf Jaenischらにより外来遺伝子のノックインマウス作製の成功が報告されているが、その作成効率は10%程度であり、遺伝子欠損や塩基置換ノックインと比べて低い<ref><pubmed>23992847</pubmed></ref>[29]。数kbの外来遺伝子のノックインは、蛍光タンパク質やCreリコンビナーゼ等の機能カセットを標的部位に挿入したり、floxedマウスを作成するのに必要であり、生命科学にとって欠かすことのできない重要な技術である。このため、ノックインマウス作製の効率化は、CRISPR/Cas9を用いたゲノム編集にとって大きな課題の一つであった。
 遺伝子改変マウスの作成を容易にしたCRISPR/Cas9であるが、数kbの長い外来遺伝子のノックインマウスの作製は困難である。Rudolf Jaenischらにより外来遺伝子のノックインマウス作製の成功が報告されているが、その作成効率は10%程度であり、遺伝子欠損や塩基置換ノックインと比べて低い<ref><pubmed>23992847</pubmed></ref>[29]。数kbの外来遺伝子のノックインは、蛍光タンパク質やCreリコンビナーゼ等の機能カセットを標的部位に挿入したり、floxedマウスを作成するのに必要であり、生命科学にとって欠かすことのできない重要な技術である。このため、ノックインマウス作製の効率化は、CRISPR/Cas9を用いたゲノム編集にとって大きな課題の一つであった。


案内メニュー