16,040
回編集
Junko kurahashi (トーク | 投稿記録) |
細編集の要約なし |
||
8行目: | 8行目: | ||
{{box|text= 遺伝子は、生物の機能を規定する大きな要因の一つである。次世代シークエンサーの開発により、様々な生物種における遺伝子配列の情報や疾患に関与する遺伝子変異が明らかにされている。しかし、塩基配列を比較するだけでは、遺伝子の機能や疾患の病態を明らかにすることは難しい。ゲノム配列を自由に改変し、その影響を解析できて、初めて生命現象や疾患における遺伝子の役割を理解できる。ゲノム編集は、全ての生物・細胞の、全てのゲノム配列を自在に改変することである。この技術は、神経科学のみならず、多くの生命科学への応用が期待されている<ref><pubmed>24444057</pubmed></ref>[1]。}} | {{box|text= 遺伝子は、生物の機能を規定する大きな要因の一つである。次世代シークエンサーの開発により、様々な生物種における遺伝子配列の情報や疾患に関与する遺伝子変異が明らかにされている。しかし、塩基配列を比較するだけでは、遺伝子の機能や疾患の病態を明らかにすることは難しい。ゲノム配列を自由に改変し、その影響を解析できて、初めて生命現象や疾患における遺伝子の役割を理解できる。ゲノム編集は、全ての生物・細胞の、全てのゲノム配列を自在に改変することである。この技術は、神経科学のみならず、多くの生命科学への応用が期待されている<ref><pubmed>24444057</pubmed></ref>[1]。}} | ||
</u>(編集部コメント:この文章はむしろイントロにふさわしいものと思います。抄録では、全体の内容に関するサマリーを願い致します。)</u> | |||
== ゲノム編集とは == | == ゲノム編集とは == | ||
14行目: | 15行目: | ||
ゲノム編集は、狙ったゲノム部位にDNAの二本鎖切断を起こし、その後に誘導されるDNAの修復機構を利用し、標的ゲノムの破壊・塩基置換、標的ゲノム部位への外来遺伝子の挿入([[ノックイン]])などを可能にする技術である('''図1''')。 | ゲノム編集は、狙ったゲノム部位にDNAの二本鎖切断を起こし、その後に誘導されるDNAの修復機構を利用し、標的ゲノムの破壊・塩基置換、標的ゲノム部位への外来遺伝子の挿入([[ノックイン]])などを可能にする技術である('''図1''')。 | ||
細胞にはDNA二本鎖切断に対する2つの主要な修復機構が存在する。 | |||
一つは、[[非相同末端結合]](non-homologous end joining, NHEJ)であり、切断された末端同士を直接連結する。NHEJによる修復は、再連結の際、[[wj:ヌクレオチド|ヌクレオチド]]の欠失(数塩基から数百塩基)・挿入(数塩基から数十塩基)を高頻度で起こすため、修復の正確性は低い。従って、DNA二本鎖切断をタンパク質のコード領域に起こし、NHEJを利用し[[wj:フレームシフト突然変異|フレームシフト]]を起こすことにより遺伝子機能を破壊することができる。 | |||
もう一つの修復機構である[[相同組換え]]は、外部から導入した鋳型DNAを利用して正確な修復を行う。鋳型DNAに塩基置換や他の遺伝子を挿入することにより、標的ゲノムの塩基置換や外来遺伝子の[[ノックイン]]をすることができる。 | もう一つの修復機構である[[相同組換え]]は、外部から導入した鋳型DNAを利用して正確な修復を行う。鋳型DNAに塩基置換や他の遺伝子を挿入することにより、標的ゲノムの塩基置換や外来遺伝子の[[ノックイン]]をすることができる。 | ||
22行目: | 25行目: | ||
=== ツール === | === ツール === | ||
[[Image:ゲノム図2.png|thumb|right|400px|'''図2. ゲノム編集に用いられる部位特異的ヌクレアーゼの構造'''<br>'''A.''' ZFN<br />'''B.''' TALEN<br />'''C.'''CRISPR/Cas8]] | [[Image:ゲノム図2.png|thumb|right|400px|'''図2. ゲノム編集に用いられる部位特異的ヌクレアーゼの構造'''<br>'''A.''' ZFN<br />'''B.''' TALEN<br />'''C.'''CRISPR/Cas8]] | ||
ゲノム編集にとって最も重要なステップは、ゲノム上の狙った塩基配列にDNA二本鎖切断を導入することである。そのために、[[ | ゲノム編集にとって最も重要なステップは、ゲノム上の狙った塩基配列にDNA二本鎖切断を導入することである。そのために、[[zinc-finger nuclease]] ([[ZFN]])、[[transcription activator-like effector nuclease]] ([[TALEN]])、[[clustered regularly interspaced short palindromic repeats]] (CRISPR)/[[CRISPR-associated proteins]] (Cas) [[CRISPR]]/[[Cas9]]、以下CRISPR/Casと略)などの部位特異的[[wj:ヌクレアーゼ|ヌクレアーゼ]]を用いる('''図2''')。 | ||
1996年に報告されたZFNと2010年に報告されたTALENは、DNA二本鎖切断活性を持つ[[FokI]]ヌクレアーゼにDNA結合タンパク質のDNA結合ドメインを融合した一対の人工ヌクレアーゼを用い、狙った標的部位にDNA二本鎖切断を導入する。 | |||
第一世代のZFNは、DNA結合ドメインとしてzinc fingerを持つ人工ヌクレアーゼで、1つのzinc fingerは3塩基を認識するので、3〜6個のzinc | 第一世代のZFNは、DNA結合ドメインとしてzinc fingerを持つ人工ヌクレアーゼで、1つのzinc fingerは3塩基を認識するので、3〜6個のzinc fingerを持つZFNは9〜18 base pair (bp)に特異的に結合し、一対で18〜36 bpの特異性でDNA二本鎖切断を導入する。 | ||
第二世代のTALENは、DNA結合ドメインとして植物病原細菌の[[wj:キサントモナス属|''Xanthomonas''属]]が有するTALEを持つ人工ヌクレアーゼである。TALEのDNA結合ドメインは、1塩基を認識する34個のアミノ酸が一単位となり、それを15〜20単位持つTALENをセンス鎖、アンチセンス鎖それぞれに作製し、狙った標的部位にDNA二本鎖切断を導入する。 | 第二世代のTALENは、DNA結合ドメインとして植物病原細菌の[[wj:キサントモナス属|''Xanthomonas''属]]が有するTALEを持つ人工ヌクレアーゼである。TALEのDNA結合ドメインは、1塩基を認識する34個のアミノ酸が一単位となり、それを15〜20単位持つTALENをセンス鎖、アンチセンス鎖それぞれに作製し、狙った標的部位にDNA二本鎖切断を導入する。 | ||
41行目: | 44行目: | ||
=== DNAの編集 === | === DNAの編集 === | ||
==== CRISPR/Cas9システム ==== | ==== CRISPR/Cas9システム ==== | ||
CRISPR/Cas9システムは、クラス2のⅡ型に分類されるCRISPR/Casシステムであり、CRISPR RNA (crRNA:外来DNA断片と相補的配列を持つ)、trans-activating crRNA (tracrRNA:crRNAの外来DNAと相補的配列以外の部分に結合し、Cas9とcrRNAの複合体形成に必要である)、Cas9タンパク質の3種類の要素から成っている('''図2c''')。[[wj: | CRISPR/Cas9システムは、クラス2のⅡ型に分類されるCRISPR/Casシステムであり、CRISPR RNA (crRNA:外来DNA断片と相補的配列を持つ)、trans-activating crRNA (tracrRNA:crRNAの外来DNAと相補的配列以外の部分に結合し、Cas9とcrRNAの複合体形成に必要である)、Cas9タンパク質の3種類の要素から成っている('''図2c''')。[[wj:化膿レンサ球菌|''Streptococcus pyogenes'']]株由来のCas9タンパク質は、標的ゲノム配列の下流にある3つの塩基;N(G, A, T, or C)GGをPMA配列(Proto-spacer Adjacent Motif)として認識し、その3塩期上流を切断する。現在普及しているシステムは、標的DNAに対して相補的配列を持つcrRNAの3’末端にtracrRNAを連結させたsingle guide RNA (sgRNA)とCas9を発現させることにより、ゲノムDNA上の狙った部位にDNA二本鎖切断を導入する。 | ||
約100塩基のsgRNAのうち、DNA二本鎖切断の標的部位を規定するのは標的部位と相補的配列を持つ20塩基のみである。従って、CRISPR/Cas9システムをゲノム編集ツールとして利用する場合、標的ごとに変える必要があるのはわずか20塩基のみであり、それ以外の塩基配列およびCas9はすべて共通である。CRISPR/Cas9システムは、guide RNAの作製の簡便さ、guide | 約100塩基のsgRNAのうち、DNA二本鎖切断の標的部位を規定するのは標的部位と相補的配列を持つ20塩基のみである。従って、CRISPR/Cas9システムをゲノム編集ツールとして利用する場合、標的ごとに変える必要があるのはわずか20塩基のみであり、それ以外の塩基配列およびCas9はすべて共通である。CRISPR/Cas9システムは、guide RNAの作製の簡便さ、guide RNAを増やすことにより複数遺伝子の同時編集が可能なことから、誰もが使うことのできるゲノム編集ツールとして急速に普及した。2012年の最初の発表以来、[[wj:大腸菌|大腸菌]]、[[ヒト]]細胞から[[ゼブラフィッシュ]]に至る多くの細胞・生物種への応用が報告されている<ref><pubmed> 25430774</pubmed></ref>[3]。いまやヒトや[[サル]]を含むあらゆる動物個体、植物、微生物への利用が急速に広がっている。 | ||
ゲノム編集ツールとしてのCRISPR/Cas9システムの大きな問題点は、「オフターゲット」と「PAM配列の制約」である。オフターゲットとは、標的でないゲノム部位のDNA配列を変えてしまうことである。オフターゲットの起こる頻度は、細胞種・標的遺伝子座・guide RNAなどにより大きく変化する。オフターゲットを回避する方法として、ダブルニッキング法が考案されている。天然型のCas9は2つのヌクレアーゼドメインを持っているが、その一方をアミノ酸置換により不活性化した一本鎖切断型Cas9(Cas9 nickase)を用いる方法が考案されている<ref><pubmed>23992846</pubmed></ref> | ゲノム編集ツールとしてのCRISPR/Cas9システムの大きな問題点は、「オフターゲット」と「PAM配列の制約」である。オフターゲットとは、標的でないゲノム部位のDNA配列を変えてしまうことである。オフターゲットの起こる頻度は、細胞種・標的遺伝子座・guide RNAなどにより大きく変化する。オフターゲットを回避する方法として、ダブルニッキング法が考案されている。天然型のCas9は2つのヌクレアーゼドメインを持っているが、その一方をアミノ酸置換により不活性化した一本鎖切断型Cas9(Cas9 nickase)を用いる方法が考案されている<ref><pubmed>23992846</pubmed></ref><ref><pubmed>27208701</pubmed></ref>[4][5]。標的部位に近接したセンス鎖、アンチセンス鎖に1対のCRISPR/Cas9 nickaseが結合した際にのみDNA二本鎖切断が誘導されるので、オフターゲットの起こる頻度は少なくなる。最近、Cas9 nickaseを用いた標的部位でのゲノム編集効率は、天然型のCas9編集効率と同等かそれ以上であることが報告されている<ref><pubmed> 29584876</pubmed></ref>[6]。また、CRISPR/Cas9を用いて作製された遺伝子改変マウスにおけるオフターゲットの頻度は、全ゲノムレベルで解析した例が少なく確定的ではないが、当初報告されたよりは少ないと考えられている<ref>CRISPR off-targets: a reassessment.<br> | ||
Nature Methods. 2018, 15(4):229-30. doi:10.1038/nmeth.4664</ref> <ref>'''Schaefer KA, Darbo BW, Colgan DF, Tsang SH, Bassuk AG, Mahajan VB.'''<br>Corrigendum and follow-up: Whole genome sequencing of multiple CRISPR-edited mouse lines suggests no excess mutations.<br>bioRxiv. 2017, Posted Jun. 23. Doi: http://dx.org/10.1101/154450</ref> [7][8]。 | Nature Methods. 2018, 15(4):229-30. doi:10.1038/nmeth.4664</ref> <ref>'''Schaefer KA, Darbo BW, Colgan DF, Tsang SH, Bassuk AG, Mahajan VB.'''<br>Corrigendum and follow-up: Whole genome sequencing of multiple CRISPR-edited mouse lines suggests no excess mutations.<br>bioRxiv. 2017, Posted Jun. 23. Doi: http://dx.org/10.1101/154450</ref> [7][8]。 | ||
在ゲノム編集で最もよく使われているSpCas9は | 在ゲノム編集で最もよく使われているSpCas9は''Streptococcus pyogenes''由来であり、DNA二本鎖切断の部位を決めるには標的DNA配列の下流に隣接するNGGというPAM配列が必要である。このPAM配列の制約により、ゲノムの全ての場所を編集できないという制限があった。David Liuのグループは、[[phage-assisted continuous evolution]] ([[PACE]])を利用して、NG、GAAおよびGATをPAMとするSpCas9変異体 (xCas9)の作成に成功した<ref><pubmed>29512652</pubmed></ref>[9]。xCas9は哺乳類細胞において、最も広範なPAM配列を認識する制約の少ないCasである。さらに機序は不明であるが、xCas9はオフターゲットの頻度も抑制し、Cas9の主要な欠点であるオフターゲットとPAM配列の制約の2つを回避できる理想的なゲノム編集ツールである。 | ||
==== CRISPR/Cpf1システム ==== | ==== CRISPR/Cpf1システム ==== | ||
54行目: | 57行目: | ||
#Cpf1はgRNAとしてcrRNAのみを必要とし、tracrRNAは必要ない。 | #Cpf1はgRNAとしてcrRNAのみを必要とし、tracrRNAは必要ない。 | ||
#Cpf1はCas9と異なり、PAM配列としてTTTV (VはA, C, G)、TTCV, TCTV, CTTVを認識する。 | #Cpf1はCas9と異なり、PAM配列としてTTTV (VはA, C, G)、TTCV, TCTV, CTTVを認識する。 | ||
# | #Cas9はDNA二本鎖を切断し平滑末端を形成するが、Cpf1は突出末端を形成する。 | ||
CRISPR/Cpf1システムは、ヒト細胞株やマウス受精卵のゲノム編集に応用され、CRISPR/Cas9システムよりオフターゲットの頻度が少ないことが報告されている<ref><pubmed>27347757</pubmed></ref><ref><pubmed>27272387</pubmed></ref>[11][12]。 | CRISPR/Cpf1システムは、ヒト細胞株やマウス受精卵のゲノム編集に応用され、CRISPR/Cas9システムよりオフターゲットの頻度が少ないことが報告されている<ref><pubmed>27347757</pubmed></ref><ref><pubmed>27272387</pubmed></ref>[11][12]。 | ||
61行目: | 64行目: | ||
従来のゲノム編集は、標的のゲノム部位にDNAの二本鎖切断を起こし、その後に誘導されるDNAの修復機構を利用し、標的DNAを編集する。 | 従来のゲノム編集は、標的のゲノム部位にDNAの二本鎖切断を起こし、その後に誘導されるDNAの修復機構を利用し、標的DNAを編集する。 | ||
一方CRISPR/dCAS9-BEシステムは、DNAを切断することなく標的DNAの塩基を編集する方法である。ヌクレアーゼ活性を失活させたCas9(dCas9)に、脱アミノ化酵素である[[シチジンデアミナーゼ]]を融合させた塩基エディター(BE)を作成し、guide RNAにより狙ったゲノム部位に塩基エディターを働かせ、標的部位の[[wj:シトシン|シトシン]](C)を[[wj:チミン|チミン]](T)(あるいは[[wj:グアニン|グアニン]](G)を[[wj:アデニン|アデニン]](A))に置換する<ref><pubmed>27096365</pubmed></ref> | 一方CRISPR/dCAS9-BEシステムは、DNAを切断することなく標的DNAの塩基を編集する方法である。ヌクレアーゼ活性を失活させたCas9(dCas9)に、脱アミノ化酵素である[[シチジンデアミナーゼ]]を融合させた塩基エディター(BE)を作成し、guide RNAにより狙ったゲノム部位に塩基エディターを働かせ、標的部位の[[wj:シトシン|シトシン]](C)を[[wj:チミン|チミン]](T)(あるいは[[wj:グアニン|グアニン]](G)を[[wj:アデニン|アデニン]](A))に置換する<ref><pubmed>27096365</pubmed></ref><ref><pubmed>27492474</pubmed></ref>[13][14]。さらにDavid Liuのグループは、PACEを利用してDNAのAをG(あるいはTをC)に置換できる転移RNAのアデノシンデアミナーゼ変異体(アデニン塩基エディター(ABE))の作成に成功した<ref><pubmed>29160308</pubmed></ref>[15]。dCas9と融合したBEあるいはABEを用いることにより、DNAの二本鎖切断を起こさずにDNAの4塩基全てを個別に置き換えられる。既知の遺伝性疾患の原因となる一塩基変異の約50%は、G-C塩基対からA-T塩基対への転移なので、CRISPR/dCas-ABEシステムは遺伝性疾患を根本的に治す可能性を持っている。 | ||
===RNAの編集=== | ===RNAの編集=== | ||
76行目: | 79行目: | ||
さらに、失活させたCas13a (dCas13a)に蛍光タンパク質を融合させることにより、目的のRNAを可視化することができる<ref name=Abudayyeh2017/>[17]。 | さらに、失活させたCas13a (dCas13a)に蛍光タンパク質を融合させることにより、目的のRNAを可視化することができる<ref name=Abudayyeh2017/>[17]。 | ||
最近、Cas13aより高効率かつ高い特異性で標的RNAをノックダウンすることができる[[Cas13b]]が同定された<ref name=Cox2017><pubmed>29070703</pubmed></ref>[18]。Cas13は、pre-CRISPR RNAをプロセッシングしcrRNAを生成できる活性を持っており、多数の標的RNAを含んだpre-CRISPR RNAをguide RNAとして用いることにより、一度に多くのRNAをノックダウンできる<ref name=Abudayyeh2017/>[17]。 | |||
==== CRISPR/dCas13-ADARシステム ==== | ==== CRISPR/dCas13-ADARシステム ==== | ||
[[Image:ゲノム図3.png|thumb|right|400px|'''図3. CRISPR/dCas13-ADARシステム''']] | [[Image:ゲノム図3.png|thumb|right|400px|'''図3. CRISPR/dCas13-ADARシステム''']] | ||
[[w:Feng Zhang|Feng Zhang]]のグループは、失活させたCas13b (dCas13b)にRNAデアミナーゼ(RNAのアデニン(A)を[[wj:イノシン|イノシン]](I)に変化させる酵素,ADAR)を融合させ、標的RNAを編集できる系を確立した(RNA Editing for Programmable A to I Replacement (REPAIR)'''図3''')<ref name=Cox2017/>[18]。この系は、RNAの変異を正常に戻すことができる。さらに、RNAを標的にした編集はオフターゲットが起きてもその影響は一過性であり、遺伝子治療としては安全性が高い。 | |||
== CRISPR/Casシステムの神経科学への応用 == | == CRISPR/Casシステムの神経科学への応用 == | ||
86行目: | 89行目: | ||
CRISPR/Casシステムを細胞に適用することにより、遺伝子の機能を欠損させたり亢進させたりすることが簡単にでき、様々な細胞機能に関与する遺伝子群をゲノムワイドに検索できる。<ref><pubmed>27606440</pubmed></ref> | CRISPR/Casシステムを細胞に適用することにより、遺伝子の機能を欠損させたり亢進させたりすることが簡単にでき、様々な細胞機能に関与する遺伝子群をゲノムワイドに検索できる。<ref><pubmed>27606440</pubmed></ref> | ||
====ゲノム編集 ==== | ====ゲノム編集 ==== | ||
神経細胞などの[[初代培養細胞]]は、一般的にCRISPR/Casシステムによるゲノム編集効率は低く、それぞれの細胞種による最適化が必要である。[[ES細胞]]や[[iPS細胞]]におけるCRISPR/Casシステムを用いたゲノム編集の効率化は、多くの実績がある。従って、ゲノム編集したES細胞やiPS細胞を用い、それらから分化させた神経細胞の機能を解析する方法も有効である。 | |||
また、CRISPR/Casシステムの開発により、疾患原因遺伝子の変異以外は遺伝的に同一(isogenic)なiPS細胞を作成することが効率化された。iPS細胞におけるゲノム編集は、従来の相同組換えを用いた方法では変異導入効率が低く、クローン化に多大な労力が必要とされた。しかし、CRISPR/ | また、CRISPR/Casシステムの開発により、疾患原因遺伝子の変異以外は遺伝的に同一(isogenic)なiPS細胞を作成することが効率化された。iPS細胞におけるゲノム編集は、従来の相同組換えを用いた方法では変異導入効率が低く、クローン化に多大な労力が必要とされた。しかし、CRISPR/Casシステムの開発により、iPS細胞のゲノム編集がより効率化され、単純な遺伝子欠損に加え、疾患の原因と考えられる様々な変異([[1塩基置換]]や大きな欠失など)を導入することが可能になった。従って、樹立された患者iPS細胞の疾患原因遺伝子の変異を正常に戻したり、健常人から樹立したiPS細胞に疾患の原因遺伝子変異を導入することによりisogenicな疾患モデル細胞を作成することが可能になった<ref><pubmed>26059412</pubmed></ref>[20]。今後、isogenicなiPS細胞を用いることにより、疾患研究が加速すると期待される。 | ||
==== 転写制御 ==== | ==== 転写制御 ==== |