16,040
回編集
細 (→構造) |
細 (→新規ナノボディ) |
||
45行目: | 45行目: | ||
次に免疫された動物から血液を採集し、その中にある[[wj:B細胞|B細胞]]から、可変領域を含むcDNAライブラリーをM13ファージを使った[[ファージディスプレイ]]ライブラリーに組み込み、固定化した抗原を使ったスクリーニングすることで、cDNA配列を単離し、抗原に結合するナノボディ配列を知ることができる<ref><pubmed>24577359</pubmed></ref><ref><pubmed>19554288</pubmed></ref>。ラクダ科動物の遺伝子を組み込んだマウスも開発されているが、その利用は一般的ではないようである<ref><pubmed>16148123</pubmed></ref><ref><pubmed>17015837</pubmed></ref>。 | 次に免疫された動物から血液を採集し、その中にある[[wj:B細胞|B細胞]]から、可変領域を含むcDNAライブラリーをM13ファージを使った[[ファージディスプレイ]]ライブラリーに組み込み、固定化した抗原を使ったスクリーニングすることで、cDNA配列を単離し、抗原に結合するナノボディ配列を知ることができる<ref><pubmed>24577359</pubmed></ref><ref><pubmed>19554288</pubmed></ref>。ラクダ科動物の遺伝子を組み込んだマウスも開発されているが、その利用は一般的ではないようである<ref><pubmed>16148123</pubmed></ref><ref><pubmed>17015837</pubmed></ref>。 | ||
このスクリーニングを効果的に行うための工夫が多数開発されてきている<ref><pubmed>29477934</pubmed></ref> | このスクリーニングを効果的に行うための工夫が多数開発されてきている<ref><pubmed>29477934</pubmed></ref>。ファージディスプレイの担体の工夫、[[w:Staphylococcus carnosus|''Staphylococcus carnosus'']]のような[[wj:グラム陽性菌|グラム陽性菌]]表面へのディスプレイ、酵母細胞表面へのディスプレイ、[[mRNAディスプレイ]]、[[リボソームディスプレイ]]、細胞内での[[2ハイブリッドスクリーニング]]などが用いられてきている。 | ||
特に、最近、これらの方法を組み合わせることで、効率的に行う戦略が考案されている。Fridyらは、免疫動物の結合抗体を精製しその質量スペクトルの結果とファージディスプレイのハイスループットな配列決定を組み合わせる方法で、蛍光タンパク質に結合する多数のナノボディを報告した<ref><pubmed>25362362</pubmed></ref>。Zimmermann は、リボソームディスプレイ、ファージディスプレイ、ELISAを組み合わせることで、短期間にナノボディ配列を得る戦略を報告している<ref><pubmed>29792401</pubmed></ref>。また、McMahon らは、酵母ディスプレイを用いて、免疫動物を用いない合成ライブラリーをスクリーニングすることで親和性の高いナノボディ配列を得ることができることを示している<ref><pubmed>29434346</pubmed></ref> 。 | 特に、最近、これらの方法を組み合わせることで、効率的に行う戦略が考案されている。Fridyらは、免疫動物の結合抗体を精製しその質量スペクトルの結果とファージディスプレイのハイスループットな配列決定を組み合わせる方法で、蛍光タンパク質に結合する多数のナノボディを報告した<ref><pubmed>25362362</pubmed></ref>。Zimmermann は、リボソームディスプレイ、ファージディスプレイ、ELISAを組み合わせることで、短期間にナノボディ配列を得る戦略を報告している<ref><pubmed>29792401</pubmed></ref>。また、McMahon らは、酵母ディスプレイを用いて、免疫動物を用いない合成ライブラリーをスクリーニングすることで親和性の高いナノボディ配列を得ることができることを示している<ref><pubmed>29434346</pubmed></ref> 。 |