「ゲノム編集」の版間の差分

ナビゲーションに移動 検索に移動
50行目: 50行目:
 約100塩基のsgRNAのうち、DNA二本鎖切断の標的部位を規定するのは標的部位と相補的配列を持つ20塩基のみである。従って、CRISPR/Cas9システムをゲノム編集ツールとして利用する場合、標的ごとに変える必要があるのはわずか20塩基のみであり、それ以外の塩基配列およびCas9はすべて共通である。CRISPR/Cas9システムは、guide RNAの作製の簡便さ、guide RNAを増やすことにより複数遺伝子の同時編集が可能なことから、誰もが使うことのできるゲノム編集ツールとして急速に普及した。2012年の最初の発表以来、[[wj:大腸菌|大腸菌]]、[[ヒト]]細胞から[[ゼブラフィッシュ]]に至る多くの細胞・生物種への応用が報告されている<ref><pubmed> 25430774</pubmed></ref>。いまやヒトや[[サル]]を含むあらゆる動物個体、植物、微生物への利用が急速に広がっている。
 約100塩基のsgRNAのうち、DNA二本鎖切断の標的部位を規定するのは標的部位と相補的配列を持つ20塩基のみである。従って、CRISPR/Cas9システムをゲノム編集ツールとして利用する場合、標的ごとに変える必要があるのはわずか20塩基のみであり、それ以外の塩基配列およびCas9はすべて共通である。CRISPR/Cas9システムは、guide RNAの作製の簡便さ、guide RNAを増やすことにより複数遺伝子の同時編集が可能なことから、誰もが使うことのできるゲノム編集ツールとして急速に普及した。2012年の最初の発表以来、[[wj:大腸菌|大腸菌]]、[[ヒト]]細胞から[[ゼブラフィッシュ]]に至る多くの細胞・生物種への応用が報告されている<ref><pubmed> 25430774</pubmed></ref>。いまやヒトや[[サル]]を含むあらゆる動物個体、植物、微生物への利用が急速に広がっている。


 ゲノム編集ツールとしてのCRISPR/Cas9システムの大きな問題点は、「オフターゲット」と「PAM配列の制約」である。オフターゲットとは、標的でないゲノム部位のDNA配列を変えてしまうことである。オフターゲットの起こる頻度は、細胞種・標的遺伝子座・guide RNAなどにより大きく変化する。オフターゲットを回避する方法として、ダブルニッキング法が考案されている。天然型のCas9は2つのヌクレアーゼドメインを持っているが、その一方をアミノ酸置換により不活性化した一本鎖切断型Cas9(Cas9 nickase)を用いる方法が考案されている<ref><pubmed>23992846</pubmed></ref><ref><pubmed>27208701</pubmed></ref>。標的部位に近接したセンス鎖、アンチセンス鎖に1対のCRISPR/Cas9 nickaseが結合した際にのみDNA二本鎖切断が誘導されるので、オフターゲットの起こる頻度は少なくなる。最近、Cas9 nickaseを用いた標的部位でのゲノム編集効率は、天然型のCas9編集効率と同等かそれ以上であることが報告されている<ref><pubmed> 29584876</pubmed></ref>。また、CRISPR/Cas9を用いて作製された遺伝子改変マウスにおけるオフターゲットの頻度は、全ゲノムレベルで解析した例が少なく確定的ではないが、当初報告されたよりは少ないと考えられている<ref>CRISPR off-targets: a reassessment.<br>
 ゲノム編集ツールとしてのCRISPR/Cas9システムの大きな問題点は、「オフターゲット」、「PAM配列の制約」、「望ましくないオンターゲット変異」である。オフターゲットとは、標的でないゲノム部位のDNA配列を変えてしまうことである。オフターゲットの起こる頻度は、細胞種・標的遺伝子座・guide RNAなどにより大きく変化する。オフターゲットを回避する方法として、ダブルニッキング法が考案されている。天然型のCas9は2つのヌクレアーゼドメインを持っているが、その一方をアミノ酸置換により不活性化した一本鎖切断型Cas9(Cas9 nickase)を用いる方法が考案されている<ref><pubmed>23992846</pubmed></ref><ref><pubmed>27208701</pubmed></ref>。標的部位に近接したセンス鎖、アンチセンス鎖に1対のCRISPR/Cas9 nickaseが結合した際にのみDNA二本鎖切断が誘導されるので、オフターゲットの起こる頻度は少なくなる。最近、Cas9 nickaseを用いた標的部位でのゲノム編集効率は、天然型のCas9編集効率と同等かそれ以上であることが報告されている<ref><pubmed> 29584876</pubmed></ref>。また、CRISPR/Cas9を用いて作製された遺伝子改変マウスにおけるオフターゲットの頻度は、全ゲノムレベルで解析した例が少なく確定的ではないが、当初報告されたよりは少ないと考えられている<ref>CRISPR off-targets: a reassessment.<br>
Nature Methods. 2018, 15(4):229-30. doi:10.1038/nmeth.4664</ref><ref>'''Schaefer KA, Darbo BW, Colgan DF, Tsang SH, Bassuk AG, Mahajan VB.'''<br>Corrigendum and follow-up: Whole genome sequencing of multiple CRISPR-edited mouse lines suggests no excess mutations.<br>bioRxiv. 2017, Posted Jun. 23. Doi: http://dx.org/10.1101/154450</ref>。
Nature Methods. 2018, 15(4):229-30. doi:10.1038/nmeth.4664</ref><ref>'''Schaefer KA, Darbo BW, Colgan DF, Tsang SH, Bassuk AG, Mahajan VB.'''<br>Corrigendum and follow-up: Whole genome sequencing of multiple CRISPR-edited mouse lines suggests no excess mutations.<br>bioRxiv. 2017, Posted Jun. 23. Doi: http://dx.org/10.1101/154450</ref>。


 在ゲノム編集で最もよく使われているSpCas9は''Streptococcus pyogenes''由来であり、DNA二本鎖切断の部位を決めるには標的DNA配列の下流に隣接するNGGというPAM配列が必要である。このPAM配列の制約により、ゲノムの全ての場所を編集できないという制限があった。David Liuのグループは、[[phage-assisted continuous evolution]] ([[PACE]])を利用して、NG、GAAおよびGATをPAMとするSpCas9変異体 (xCas9)の作成に成功した<ref><pubmed>29512652</pubmed></ref>。xCas9は哺乳類細胞において、最も広範なPAM配列を認識する制約の少ないCasである。さらに機序は不明であるが、xCas9はオフターゲットの頻度も抑制し、Cas9の主要な欠点であるオフターゲットとPAM配列の制約の2つを回避できる理想的なゲノム編集ツールである。
 在ゲノム編集で最もよく使われているSpCas9は''Streptococcus pyogenes''由来であり、DNA二本鎖切断の部位を決めるには標的DNA配列の下流に隣接するNGGというPAM配列が必要である。このPAM配列の制約により、ゲノムの全ての場所を編集できないという制限があった。David Liuのグループは、[[phage-assisted continuous evolution]] ([[PACE]])を利用して、NG、GAAおよびGATをPAMとするSpCas9変異体 (xCas9)の作成に成功した<ref><pubmed>29512652</pubmed></ref>。さらに、濡木らのグループは、SpCas9に7つのアミノ酸置換を導入し、NGをPAM配列として認識するSpCas9-NGを開発した[10]。野生型SpCas9はPAM配列としてNGGを要求するため、確率的にゲノムの1/16しか標的にできなかったが、SpCas9-NGはNGをPAM配列として認識するため、野生型の4倍のゲノム領域を標的とすることができる。Sp-Cas9は、培養細胞においてxCas9より高いDNA切断活性を持っている。
 従来、Cas9によるDNA二本鎖切断により誘導される標的部位での変異は20塩基未満の欠失・挿入であると考えられていた。しかし、ロングレンジPCR解析などにより、標的部位に大規模な欠失や逆位などの複雑な再編が起こることが報告された[11][12]。従って、ゲノム編集が目的通りに行われたかどうかは、サザンブロット解析などのにより慎重に行う必要がある。


==== CRISPR/Cpf1====
==== CRISPR/Cpf1====

案内メニュー