16,040
回編集
細 (→生体におけるゲノム編集) |
細 (→CRISPR/Cas9) |
||
51行目: | 51行目: | ||
ゲノム編集ツールとしてのCRISPR/Cas9システムの大きな問題点は、「オフターゲット」、「PAM配列の制約」、「望ましくないオンターゲット変異」である。オフターゲットとは、標的でないゲノム部位のDNA配列を変えてしまうことである。オフターゲットの起こる頻度は、細胞種・標的遺伝子座・guide RNAなどにより大きく変化する。オフターゲットを回避する方法として、ダブルニッキング法が考案されている。天然型のCas9は2つのヌクレアーゼドメインを持っているが、その一方をアミノ酸置換により不活性化した一本鎖切断型Cas9(Cas9 nickase)を用いる方法が考案されている<ref><pubmed>23992846</pubmed></ref><ref><pubmed>27208701</pubmed></ref>。標的部位に近接したセンス鎖、アンチセンス鎖に1対のCRISPR/Cas9 nickaseが結合した際にのみDNA二本鎖切断が誘導されるので、オフターゲットの起こる頻度は少なくなる。最近、Cas9 nickaseを用いた標的部位でのゲノム編集効率は、天然型のCas9編集効率と同等かそれ以上であることが報告されている<ref><pubmed> 29584876</pubmed></ref>。また、CRISPR/Cas9を用いて作製された遺伝子改変マウスにおけるオフターゲットの頻度は、全ゲノムレベルで解析した例が少なく確定的ではないが、当初報告されたよりは少ないと考えられている<ref>CRISPR off-targets: a reassessment.<br> | ゲノム編集ツールとしてのCRISPR/Cas9システムの大きな問題点は、「オフターゲット」、「PAM配列の制約」、「望ましくないオンターゲット変異」である。オフターゲットとは、標的でないゲノム部位のDNA配列を変えてしまうことである。オフターゲットの起こる頻度は、細胞種・標的遺伝子座・guide RNAなどにより大きく変化する。オフターゲットを回避する方法として、ダブルニッキング法が考案されている。天然型のCas9は2つのヌクレアーゼドメインを持っているが、その一方をアミノ酸置換により不活性化した一本鎖切断型Cas9(Cas9 nickase)を用いる方法が考案されている<ref><pubmed>23992846</pubmed></ref><ref><pubmed>27208701</pubmed></ref>。標的部位に近接したセンス鎖、アンチセンス鎖に1対のCRISPR/Cas9 nickaseが結合した際にのみDNA二本鎖切断が誘導されるので、オフターゲットの起こる頻度は少なくなる。最近、Cas9 nickaseを用いた標的部位でのゲノム編集効率は、天然型のCas9編集効率と同等かそれ以上であることが報告されている<ref><pubmed> 29584876</pubmed></ref>。また、CRISPR/Cas9を用いて作製された遺伝子改変マウスにおけるオフターゲットの頻度は、全ゲノムレベルで解析した例が少なく確定的ではないが、当初報告されたよりは少ないと考えられている<ref>CRISPR off-targets: a reassessment.<br> | ||
Nature Methods. 2018, 15(4):229-30. doi | Nature Methods. 2018, 15(4):229-30. [https://doi.org/10.1038/nmeth.4664 [DOI<nowiki>]</nowiki>]</ref><ref>'''Schaefer KA, Darbo BW, Colgan DF, Tsang SH, Bassuk AG, Mahajan VB.'''<br>Corrigendum and follow-up: Whole genome sequencing of multiple CRISPR-edited mouse lines suggests no excess mutations.<br>bioRxiv. 2017, Posted Jun. 23. [https://doi.org/10.1101/154450 [DOI<nowiki>]</nowiki>]</ref>。 | ||
在ゲノム編集で最もよく使われているSpCas9は''Streptococcus pyogenes''由来であり、DNA二本鎖切断の部位を決めるには標的DNA配列の下流に隣接するNGGというPAM配列が必要である。このPAM配列の制約により、ゲノムの全ての場所を編集できないという制限があった。David Liuのグループは、[[phage-assisted continuous evolution]] ([[PACE]])を利用して、NG、GAAおよびGATをPAMとするSpCas9変異体 (xCas9)の作成に成功した<ref><pubmed>29512652</pubmed></ref>。さらに、濡木らのグループは、SpCas9に7つのアミノ酸置換を導入し、NGをPAM配列として認識するSpCas9-NGを開発した<ref><pubmed> 30166441 </pubmed></ref>。野生型SpCas9はPAM配列としてNGGを要求するため、確率的にゲノムの1/16しか標的にできなかったが、SpCas9-NGはNGをPAM配列として認識するため、野生型の4倍のゲノム領域を標的とすることができる。Sp-Cas9は、培養細胞においてxCas9より高いDNA切断活性を持っている。 | 在ゲノム編集で最もよく使われているSpCas9は''Streptococcus pyogenes''由来であり、DNA二本鎖切断の部位を決めるには標的DNA配列の下流に隣接するNGGというPAM配列が必要である。このPAM配列の制約により、ゲノムの全ての場所を編集できないという制限があった。David Liuのグループは、[[phage-assisted continuous evolution]] ([[PACE]])を利用して、NG、GAAおよびGATをPAMとするSpCas9変異体 (xCas9)の作成に成功した<ref><pubmed>29512652</pubmed></ref>。さらに、濡木らのグループは、SpCas9に7つのアミノ酸置換を導入し、NGをPAM配列として認識するSpCas9-NGを開発した<ref><pubmed> 30166441 </pubmed></ref>。野生型SpCas9はPAM配列としてNGGを要求するため、確率的にゲノムの1/16しか標的にできなかったが、SpCas9-NGはNGをPAM配列として認識するため、野生型の4倍のゲノム領域を標的とすることができる。Sp-Cas9は、培養細胞においてxCas9より高いDNA切断活性を持っている。 |