「ゲノム編集」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
2行目: 2行目:
<font size="+1">[https://researchmap.jp/koichitanaka 田中光一]</font><br>
<font size="+1">[https://researchmap.jp/koichitanaka 田中光一]</font><br>
''東京医科歯科大学難治疾患研究所''<br>
''東京医科歯科大学難治疾患研究所''<br>
DOI:<selfdoi /> 原稿受付日:2018年5月25日 原稿完成日:2018年7月23日<br>
DOI:<selfdoi /> 原稿受付日:2018年5月25日 原稿完成日:2018年7月23日 改訂版受付日:2019年5月8日 原稿完成日:2019年5月10日<br>
担当編集委員:[http://researchmap.jp/2rikenbsi 林 康紀](京都大学大学院医学研究科)
担当編集委員:[http://researchmap.jp/2rikenbsi 林 康紀](京都大学大学院医学研究科)
<br>
<br>
136行目: 136行目:
 しかし従来のCRISPR/Cas9システムは、実験操作を簡便にするためcrRNAとtracrRNAを連結した一本鎖ガイドRNA(sgRNA)とCas9の2要素からなるシステムである('''図5''')。自然界の3要素システムの方が、2要素システムより、高い標的配列切断活性を持つことが報告されている。そこで筆者らは、sgRNAのかわりにcrRNAとtracrRNAを用い、Cas9蛋白質と組み合わせることで、ノックイン効率を向上できるのではないかと考えた。crRNAとtracrRNAを用いるもう一つの利点は、化学合成が可能になり、sgRNAの作製に必要な大腸菌での遺伝子組換え実験を省略できる点である。sgRNAの長さは約100塩基であるが、crRNA、tracrRNAは各々50塩基程度であり、化学合成が可能である。筆者らの改良したCRISPR/Cas9システムは、Cas9蛋白質と化学合成したcrRNAとtracrRNAの3要素からなる('''図5''')。このシステムは、大腸菌での遺伝子組換え実験を行うことなくゲノム編集が可能で、クローニングフリーCRISPR/Cas9システムと名づけた<ref name=Aida2015><pubmed>25924609</pubmed></ref>。
 しかし従来のCRISPR/Cas9システムは、実験操作を簡便にするためcrRNAとtracrRNAを連結した一本鎖ガイドRNA(sgRNA)とCas9の2要素からなるシステムである('''図5''')。自然界の3要素システムの方が、2要素システムより、高い標的配列切断活性を持つことが報告されている。そこで筆者らは、sgRNAのかわりにcrRNAとtracrRNAを用い、Cas9蛋白質と組み合わせることで、ノックイン効率を向上できるのではないかと考えた。crRNAとtracrRNAを用いるもう一つの利点は、化学合成が可能になり、sgRNAの作製に必要な大腸菌での遺伝子組換え実験を省略できる点である。sgRNAの長さは約100塩基であるが、crRNA、tracrRNAは各々50塩基程度であり、化学合成が可能である。筆者らの改良したCRISPR/Cas9システムは、Cas9蛋白質と化学合成したcrRNAとtracrRNAの3要素からなる('''図5''')。このシステムは、大腸菌での遺伝子組換え実験を行うことなくゲノム編集が可能で、クローニングフリーCRISPR/Cas9システムと名づけた<ref name=Aida2015><pubmed>25924609</pubmed></ref>。


 このクローニングフリーCRISPR/Cas9システムは、ガイドRNAの活性評価も簡便である。従来のような培養細胞を用いた実験は必要なく、試験管内で標的配列を含む[[PCR]]産物、Cas9蛋白質、crRNA、tracrRNAをインキュベートして電気泳動するだけで(''in vitro'' digestion assay:IDA)、その切断活性を調べることができる。クローニングフリーCRISPR/Cas9システムを用い、[[アクチン|ActB]] ([[β-actin]])遺伝子座に[[EGFP]](enhanced green fluorescent protein)を含む2.5 kbの外来遺伝子をノックインするマウスを作成したところ、およそ50%の新生仔マウスにEGFPが目的部位にノックインされていた。従来用いられてきたCas9 mRNAとsgRNAからなる2要素システムを用い対照実験を行ったところ、その効率は10%程度だった。このことからクローニングフリーCRISPR/Cas9システムは、外来遺伝子のノックイン効率を大幅に向上させることが明らかになった<ref name=Aida2015/>[30]。さらに作製したノックインマウスを野生型マウスと交配し、次世代への伝達効率を調べたところ、すべての系統から、50%の効率で次世代のノックインマウスが得られた。このことは、従来型CRISPR/Cas9システムで問題となるモザイク(同一個体内の一部の細胞のみに遺伝子改変が起こっている)の頻度が低いことを示している。つまり、クローニングフリーCRISPR/Cas9システムでは、標的部位のDNA二本鎖切断が迅速に起こり、受精卵の第一卵割までに片アリルに外来遺伝子がノックインされたことを示している。またオフターゲット変異の候補となる部位を解析したところ、いずれのノックインマウスでも変異は検出されなかった。このことは、クローニングフリーCRISPR/Cas9システムでは、Cas9を蛋白質として注入したことによりCas9の半減期が短くなり、標的部位を切断した後迅速に分解されるため、従来型CRISPR/Cas9システムの大きな課題であるオフターゲット変異(ガイドRNA配列に類似した配列の非特異的切断)が大幅に減少することを示している。
 このクローニングフリーCRISPR/Cas9システムは、ガイドRNAの活性評価も簡便である。従来のような培養細胞を用いた実験は必要なく、試験管内で標的配列を含む[[PCR]]産物、Cas9蛋白質、crRNA、tracrRNAをインキュベートして電気泳動するだけで(''in vitro'' digestion assay:IDA)、その切断活性を調べることができる。クローニングフリーCRISPR/Cas9システムを用い、[[アクチン|ActB]] ([[β-actin]])遺伝子座に[[EGFP]](enhanced green fluorescent protein)を含む2.5 kbの外来遺伝子をノックインするマウスを作成したところ、およそ50%の新生仔マウスにEGFPが目的部位にノックインされていた。従来用いられてきたCas9 mRNAとsgRNAからなる2要素システムを用い対照実験を行ったところ、その効率は10%程度だった。このことからクローニングフリーCRISPR/Cas9システムは、外来遺伝子のノックイン効率を大幅に向上させることが明らかになった<ref name=Aida2015/>。さらに作製したノックインマウスを野生型マウスと交配し、次世代への伝達効率を調べたところ、すべての系統から、50%の効率で次世代のノックインマウスが得られた。このことは、従来型CRISPR/Cas9システムで問題となるモザイク(同一個体内の一部の細胞のみに遺伝子改変が起こっている)の頻度が低いことを示している。つまり、クローニングフリーCRISPR/Cas9システムでは、標的部位のDNA二本鎖切断が迅速に起こり、受精卵の第一卵割までに片アリルに外来遺伝子がノックインされたことを示している。またオフターゲット変異の候補となる部位を解析したところ、いずれのノックインマウスでも変異は検出されなかった。このことは、クローニングフリーCRISPR/Cas9システムでは、Cas9を蛋白質として注入したことによりCas9の半減期が短くなり、標的部位を切断した後迅速に分解されるため、従来型CRISPR/Cas9システムの大きな課題であるオフターゲット変異(ガイドRNA配列に類似した配列の非特異的切断)が大幅に減少することを示している。


 以上の結果は、クローニングフリーCRISPR/Cas9システムが簡便で高効率、そしてモザイクとオフターゲットの少ないノックインマウス作成法であることを示している。さらに、最近、ノックインする鋳型としてプラスミドDNAより長鎖一本鎖DNAの方が効率が高いことが報告された<ref><pubmed>28511701</pubmed></ref>。従って、現時点で最も高効率な外来遺伝子のノックインマウス作成法は、一本鎖DNAを鋳型として用いるクローニングフリーCRISPR/Cas9システムである。筆者らの研究室では、この方法を用いて約50%の効率でfloxedマウスやCreノックインマウスなどを作成している。
 以上の結果は、クローニングフリーCRISPR/Cas9システムが簡便で高効率、そしてモザイクとオフターゲットの少ないノックインマウス作成法であることを示している。さらに、最近、ノックインする鋳型としてプラスミドDNAより長鎖一本鎖DNAの方が効率が高いことが報告された<ref><pubmed>28511701</pubmed></ref>。従って、現時点で最も高効率な外来遺伝子のノックインマウス作成法は、一本鎖DNAを鋳型として用いるクローニングフリーCRISPR/Cas9システムである。筆者らの研究室では、この方法を用いて約50%の効率でfloxedマウスやCreノックインマウスなどを作成している。
147行目: 147行目:
 ヒトの疾患、特に精神神経疾患のモデル動物としてマウスよりヒトと解剖学的、生理学的、遺伝学的に類似している[[非ヒト霊長類]]の疾患モデルが重要である。ゲノム編集技術を用いた標的遺伝子改変非ヒト霊長類の作成には、2014年に3つのグループが成功した<ref><pubmed>24486104</pubmed></ref><ref><pubmed>24529597</pubmed></ref><ref><pubmed>24838303</pubmed></ref>。TALENを用いた[[wj:アカゲザル|アカゲザル]]と[[wj:カニクイザル|カニクイザル]]の[[MECP2]]遺伝子の破壊とCRISPR/Cas9システムを用いたカニクイザルの3つの遺伝子([[Nr0b1]], [[Ppar-γ]] [[Rag1]])の破壊が報告された。2015年には、CRISPR/Cas9システムを用い一本鎖のオリゴDNAによる[[p53]]遺伝子への塩基置換が報告された<ref><pubmed>25430965</pubmed></ref>[37]。2018年には、[[mCherry]]やGFPなどの標的部位へのノックインカニクイザルの作成が報告された<ref><pubmed> 29327726</pubmed></ref><ref><pubmed>29327727</pubmed></ref>。現在までに作成された精神疾患の非ヒト霊長類モデルは、[[レット症候群]]のモデルであるMecP2欠損カニクイザルと[[自閉症スペクトラム障害]]のモデルである[[SHANK3]]欠損カニクイザルがあり、いずれも疾患の症状を再現している<ref><pubmed>28741620</pubmed></ref><ref><pubmed>28525759</pubmed></ref><ref><pubmed> 30329048 </pubmed></ref>。
 ヒトの疾患、特に精神神経疾患のモデル動物としてマウスよりヒトと解剖学的、生理学的、遺伝学的に類似している[[非ヒト霊長類]]の疾患モデルが重要である。ゲノム編集技術を用いた標的遺伝子改変非ヒト霊長類の作成には、2014年に3つのグループが成功した<ref><pubmed>24486104</pubmed></ref><ref><pubmed>24529597</pubmed></ref><ref><pubmed>24838303</pubmed></ref>。TALENを用いた[[wj:アカゲザル|アカゲザル]]と[[wj:カニクイザル|カニクイザル]]の[[MECP2]]遺伝子の破壊とCRISPR/Cas9システムを用いたカニクイザルの3つの遺伝子([[Nr0b1]], [[Ppar-γ]] [[Rag1]])の破壊が報告された。2015年には、CRISPR/Cas9システムを用い一本鎖のオリゴDNAによる[[p53]]遺伝子への塩基置換が報告された<ref><pubmed>25430965</pubmed></ref>[37]。2018年には、[[mCherry]]やGFPなどの標的部位へのノックインカニクイザルの作成が報告された<ref><pubmed> 29327726</pubmed></ref><ref><pubmed>29327727</pubmed></ref>。現在までに作成された精神疾患の非ヒト霊長類モデルは、[[レット症候群]]のモデルであるMecP2欠損カニクイザルと[[自閉症スペクトラム障害]]のモデルである[[SHANK3]]欠損カニクイザルがあり、いずれも疾患の症状を再現している<ref><pubmed>28741620</pubmed></ref><ref><pubmed>28525759</pubmed></ref><ref><pubmed> 30329048 </pubmed></ref>。


 CRISPR/Cas9システムを用いることにより、忠実に疾患病態を再現した非ヒト霊長類の作製が可能になった。しかし、ゲノム編集の効率化、モザイクの抑制、オフターゲットの抑制など、まだ技術の改良が必要である。また、非ヒト霊長類をモデル動物として用いる場合、個体間のゲノム多様性も重要な問題になる。最近、カニクイザルで体細胞からのクローン作成が報告されたので<ref><pubmed>29395327</pubmed></ref>、クローン技術とCRISPR/Casシステムを組み合わせることにより、遺伝的背景が均一なBMAL1欠損カニクイザルが作出された<ref>'''Liu Z, Cai Y, Liao Z, Xu Y, Wang Y, Wang Z, Jiang X, Li Y, Lu Y, Nie Y, Zhang X, Li C, Bian X, Poo M-M, Chang H-C, Sun Q'''<br>Cloning of a gene-edited macaque monkey by somatic cell nuclear transfer<br>''National Science Review'': 2019, 6;101-108[https://doi.org/10.1093/nsr/nwz003 [DOI]]</ref>。
 CRISPR/Cas9システムを用いることにより、忠実に疾患病態を再現した非ヒト霊長類の作製が可能になった。しかし、ゲノム編集の効率化、モザイクの抑制、オフターゲットの抑制など、まだ技術の改良が必要である。また、非ヒト霊長類をモデル動物として用いる場合、個体間のゲノム多様性も重要な問題になる。最近、カニクイザルで体細胞からのクローン作成が報告されたので<ref><pubmed>29395327</pubmed></ref>、クローン技術とCRISPR/Casシステムを組み合わせることにより、遺伝的背景が均一なBMAL1欠損カニクイザルが作出された<ref>'''Liu Z, Cai Y, Liao Z, Xu Y, Wang Y, Wang Z, Jiang X, Li Y, Lu Y, Nie Y, Zhang X, Li C, Bian X, Poo M-M, Chang H-C, Sun Q'''<br>Cloning of a gene-edited macaque monkey by somatic cell nuclear transfer<br>''National Science Review'': 2019, 6;101-108[https://doi.org/10.1093/nsr/nwz003 [DOI<nowiki>]</nowiki>]</ref>。


==== 生体におけるゲノム編集 ====
==== 生体におけるゲノム編集 ====

案内メニュー