「シングルセルRNAシーケンシング」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
編集の要約なし
37行目: 37行目:
==scRNA-seqの実際==
==scRNA-seqの実際==
ここでは主流になっている10x Genomics社のChromiumを用いた方法とSMART-seq2などを用いた方法に共通する方法の実際について俯瞰する。scRNA-seqの利用には、4つのステップがある(図2)<ref><pubmed>30089861</pubmed></ref>。1)個体や組織を採集し、そこから細胞あるいは細胞核を個別にすること。2)ChromiumやSMART-seq2などによる個々の細胞からのライブラリーの作製とNGS。3)前処理(preprocessing、得られた配列の整理)。4)ダウンストリーム解析(生物学的な情報を得るコンピューター生物学)。これらのうち、2)の段階については、上に記述したように市販の機器や試薬を利用する機会が多くなっているので、そのためのマニュアル等が参考になるはずである。
ここでは主流になっている10x Genomics社のChromiumを用いた方法とSMART-seq2などを用いた方法に共通する方法の実際について俯瞰する。scRNA-seqの利用には、4つのステップがある(図2)<ref><pubmed>30089861</pubmed></ref>。1)個体や組織を採集し、そこから細胞あるいは細胞核を個別にすること。2)ChromiumやSMART-seq2などによる個々の細胞からのライブラリーの作製とNGS。3)前処理(preprocessing、得られた配列の整理)。4)ダウンストリーム解析(生物学的な情報を得るコンピューター生物学)。これらのうち、2)の段階については、上に記述したように市販の機器や試薬を利用する機会が多くなっているので、そのためのマニュアル等が参考になるはずである。
  [[ファイル:
  [[ファイル:ScRNAseqFig2b.jpg|サムネイル|250px|'''図2.scRNA-seqの実際のステップ '''<br>細胞の単離、ライブラリ作製とNGS、データの前処理から次元圧縮、ダウンストリーム解析。図の一部は2016 DBCLS TogoTV、あるいはR-studio/Seuratを用いて10x Genomics社のPBMCデータ([https://support.10xgenomics.com/single-cell-gene-expression/datasets]から執筆者が作製。]]
[[ファイル:ScRNAseqFig2b.jpg|サムネイル|250px|'''図2.scRNA-seqの実際のステップ '''<br>細胞の単離、ライブラリ作製とNGS、データの前処理から次元圧縮、ダウンストリーム解析。図の一部は2016 DBCLS TogoTV、あるいはR-studio/Seuratを用いて10x Genomics社のPBMCデータ([https://support.10xgenomics.com/single-cell-gene-expression/datasets]から執筆者が作製。]]


===組織からの細胞、細胞核の分離===
===組織からの細胞、細胞核の分離===
68行目: 67行目:
実験的なノイズとは別に生物学的に意味のある遺伝子発現の変動には、位置情報、[[細胞周期]]、[[概日リズム]]、発現変動が大きい破裂型プロモーターの作動などの理由で変動が見られるものもある<ref><pubmed> 31217225 </pubmed></ref><ref><pubmed> 26000846</pubmed></ref>。特に、刺激・薬剤処理やさまざまな病態の進行や治療に伴う細胞の変化、発生途上の細胞系譜や細胞分化といった細胞の遷移状態の解析([[偽時系列解析]]Pseudo-time analysis )には、scRNA-seqデータを用いることが効果的である<ref><pubmed>29576429</pubmed></ref><ref><pubmed>28813177</pubmed></ref><ref><pubmed>29565398</pubmed></ref>。これらの分析のためには[[軌道推定]](Trajectory inference)の解析手法が用いられる。しばしば用いられるMonocle3 <ref><pubmed>30787437</pubmed></ref>など、多くのコードを収集しているGithubのサイトがある [https://github.com/dynverse/dynmethods][https://github.com/agitter/single-cell-pseudotime]。RNA velocityといった転写産物のスプライシングの状態から細胞の分化状態を推定する方法もある<ref><pubmed>30089906</pubmed></ref>。しかし、これらの方法は、あくまで発生途上の[[細胞系譜]]や細胞分化の推定に過ぎない。細胞系譜を更に確実に観察しつつ、scRNA-seqを行うことで、細胞タイプの系統関係を調べる方法として、CRISPR-Cas9を用いた[[ゲノム編集]]による記録法を導入したscGESTALT<ref><pubmed>29608178</pubmed></ref>、ScarTrace<ref><pubmed>29590089</pubmed></ref> 、LINNAEUS<ref><pubmed>29644996</pubmed></ref>がある。
実験的なノイズとは別に生物学的に意味のある遺伝子発現の変動には、位置情報、[[細胞周期]]、[[概日リズム]]、発現変動が大きい破裂型プロモーターの作動などの理由で変動が見られるものもある<ref><pubmed> 31217225 </pubmed></ref><ref><pubmed> 26000846</pubmed></ref>。特に、刺激・薬剤処理やさまざまな病態の進行や治療に伴う細胞の変化、発生途上の細胞系譜や細胞分化といった細胞の遷移状態の解析([[偽時系列解析]]Pseudo-time analysis )には、scRNA-seqデータを用いることが効果的である<ref><pubmed>29576429</pubmed></ref><ref><pubmed>28813177</pubmed></ref><ref><pubmed>29565398</pubmed></ref>。これらの分析のためには[[軌道推定]](Trajectory inference)の解析手法が用いられる。しばしば用いられるMonocle3 <ref><pubmed>30787437</pubmed></ref>など、多くのコードを収集しているGithubのサイトがある [https://github.com/dynverse/dynmethods][https://github.com/agitter/single-cell-pseudotime]。RNA velocityといった転写産物のスプライシングの状態から細胞の分化状態を推定する方法もある<ref><pubmed>30089906</pubmed></ref>。しかし、これらの方法は、あくまで発生途上の[[細胞系譜]]や細胞分化の推定に過ぎない。細胞系譜を更に確実に観察しつつ、scRNA-seqを行うことで、細胞タイプの系統関係を調べる方法として、CRISPR-Cas9を用いた[[ゲノム編集]]による記録法を導入したscGESTALT<ref><pubmed>29608178</pubmed></ref>、ScarTrace<ref><pubmed>29590089</pubmed></ref> 、LINNAEUS<ref><pubmed>29644996</pubmed></ref>がある。


• また細胞分化や変動に伴う特徴的な遺伝子発現をscRNA-seqで観察することは、遺伝子制御ネットワーク(例、SCENIC<ref><pubmed>28991892</pubmed></ref>, [https://github.com/aertslab/SCENIC])や[[代謝経路]]や[[シグナル伝達系]]のための[[パスウェイ解析]](例、Metascape<ref><pubmed>30944313</pubmed></ref>, [http://metascape.org])を理解するシステム生物学的な研究として有用である。更に、scRNA-seqで得られた結果をもとに、細胞間相互作用の理解を深めるのを目的とするCellPhoneDB<ref><pubmed>32103204</pubmed></ref>[https://github.com/Teichlab/cellphonedb]、NicheNet<ref><pubmed>3181926</pubmed></ref>, SVCA<ref><pubmed>31577949</pubmed></ref>がある。Perturb-seq<ref><pubmed>27984732</pubmed></ref> やその変法<ref><pubmed> 32231336</pubmed></ref>は、CRISPRライブラリーによるゲノム編集を施した細胞をscRNA-seqで解析することで、遺伝子機能や遺伝子間の相互作用の理解を可能にしている。
• また細胞分化や変動に伴う特徴的な遺伝子発現をscRNA-seqで観察することは、遺伝子制御ネットワーク(例、SCENIC<ref><pubmed>28991892</pubmed></ref>, [https://github.com/aertslab/SCENIC])や[[代謝経路]]や[[シグナル伝達系]]のための[[パスウェイ解析]](例、Metascape<ref><pubmed>30944313</pubmed></ref>, [http://metascape.org])を理解するシステム生物学的な研究として有用である。更に、scRNA-seqで得られた結果をもとに、細胞間相互作用の理解を深めるのを目的とするCellPhoneDB<ref><pubmed>32103204</pubmed></ref>[https://github.com/Teichlab/cellphonedb]、NicheNet<ref><pubmed>3181926</pubmed></ref>, SVCA<ref><pubmed>31577949</pubmed></ref>がある。Perturb-seq<ref><pubmed>27984732</pubmed></ref> やその変法<ref><pubmed> 32231336</pubmed></ref>は、CRISPRライブラリーによるゲノム編集を施した細胞をscRNA-seqで解析することで、ゲノム編集で破壊された遺伝子の機能や遺伝子間の相互作用の理解を可能にしている後述するマルチモーダルなscRNA-seqの1つである。
 
 
==scRNA-seqの神経科学研究への適用==
==scRNA-seqの神経科学研究への適用==
===神経系細胞ビッグデータとしてのscRNA-seq===
===神経系細胞ビッグデータとしてのscRNA-seq===
105行目: 102行目:


===マルチモーダルなシングルセルオミクス===
===マルチモーダルなシングルセルオミクス===
同一の細胞からscRNA-seqの情報だけでなく、ゲノム配列、ATAC-seqなどによるエピゲノム解析、少数のタンパク質、あるいはプロテオームなどを、同時に記録するマルチモーダルなオミクスが注目されている<ref><pubmed>31907462</pubmed></ref><ref><pubmed>30696980</pubmed></ref>。2019年には、Nature Methodsの「Methods of the Year」に選ばれており、現状については、その特集号などを参考にされたい。
同一の細胞からscRNA-seqの情報だけでなく、ゲノム配列、ATAC-seqなどによるエピゲノム解析、少数のタンパク質、あるいはプロテオームなどを、同時に記録するマルチモーダルなオミクスが注目されている<ref><pubmed>31907462</pubmed></ref><ref><pubmed>30696980</pubmed></ref>。2019年には、Nature Methodsの「Methods of the Year」に選ばれており、現状については、その特集号などを参考にされたい。例えば、細胞表面分子に対する抗体にDNAを付加することで、マーカーを発現する細胞のトランスクリプトームを観察するCITE-seq<ref><pubmed>28759029</pubmed></ref>、 REAP-seq<ref><pubmed>28854175</pubmed></ref>は既知の細胞表面マーカーの発現とscRNA-seqが同時に観察できるマルチモーダルなオミクスである。


マルチモーダルなシングルセルオミクスとして、神経科学分野で注目されるのは、scRNA-seqをパッチクランプによる電気生理学的情報と組み合わせたPatch-seq<ref><pubmed>26689544</pubmed></ref> <ref><pubmed>26689543</pubmed></ref>である。また、細胞表面分子に対する抗体にDNAを付加することで、マーカーを発現する細胞のトランスクリプトームを観察するCITE-seq<ref><pubmed>28759029</pubmed></ref>、 REAP-seq<ref><pubmed>28854175</pubmed></ref>は既知の細胞マーカーの発現とscRNA-seqが同時に観察できるマルチモーダルなオミクスである。また、BARseq (barcoded anatomy resolved by sequencing) <ref><pubmed>31626774</pubmed></ref>[https://doi.org/10.1101/378760
マルチモーダルなシングルセルオミクスとして、神経科学分野で注目されるのは、scRNA-seqをパッチクランプによる電気生理学的情報と組み合わせたPatch-seq<ref><pubmed>26689544</pubmed></ref> <ref><pubmed>26689543</pubmed></ref>である。また、ゲノムDNAとscRNA-seqを同時に観察することによって、近年、精神疾患の観点から注目されている発生途中で生じる遺伝子変異を研究するPRDD-seqは今後の展開が注目される[https://doi.org/10.1101/2020.04.19.046904]。最後に、BARseq (barcoded anatomy resolved by sequencing) <ref><pubmed>31626774</pubmed></ref>[https://doi.org/10.1101/378760
]のような方法は、コネクトーム(神経細胞の結合性)と遺伝子発現を記録できるオミクスの新たな方向として興味深い。https://doi.org/10.1101/378760
]のような方法は、コネクトーム(神経細胞の結合性)と遺伝子発現を記録できるオミクスの新たな方向として興味深い。https://doi.org/10.1101/378760


案内メニュー