「CRMP」の版間の差分

ナビゲーションに移動 検索に移動
47 バイト追加 、 2020年8月11日 (火)
(Nijcadmin (トーク) による版 39412 を取り消し)
タグ: 取り消し
143行目: 143行目:
 CRMP2による軸索形成の分子メカニズムとして、[[微小管]]ダイナミクスの制御が報告されている。CRMP2は[[チューブリン]]ヘテロ二量体と結合して微小管の重合を促進すること、また、この微小管重合活性がCRMP2により誘導される軸索伸長に必要であることが明らかになっている<ref name="ref13"><pubmed> 12134159 </pubmed></ref>。CRMP2のチューブリンへの結合はダイナミックに制御されており、Sema3A受容体である[[ニューロピリン]]-1(NP-1)や[[プレキシン]]A(PlexA)が[[Rac]]1を活性化し、下流の[[キナーゼ]]に影響を与え、最終的にGSK-3&beta;が活性化され、CRMP2がリン酸化を受ける<ref name="ref11" /><ref name="ref14"><pubmed> 15652488 </pubmed></ref>。リン酸化されたCRMP2はチューブリンへのアフィニティーが弱くなり、軸索の退縮が促進される<ref name="ref14" />(図2)。逆に、[[ニューロトロフィン]]-3や[[脳由来神経成長因子]](BDNF)によりGSK-3&beta;が阻害され、CRMP2のリン酸化が抑制されることで、軸索伸長が促進する<ref name="ref14" />(図2)。また、CRMP2の結合タンパク質として[[Numb]]が同定されており、CRMP2が軸索先端でNumbを介した[[L1]]の[[エンドサイトーシス]]およびリサイクリングに関与する可能性が示唆されている<ref name="ref15"><pubmed> 12942088 </pubmed></ref>。[[Rhoキナーゼ]]がCRMP2をリン酸化することにより、CRMP2がNumbと結合できなくなり、軸索伸長が阻害されることも報告されている<ref name="ref16">'''有村奈利子、木村俊秀、藤井佳代、貝淵弘三'''<br>RhoキナーゼによるCRMP-2のリン酸化とその活性制御について<br>''脳21'':2004 </ref>。  
 CRMP2による軸索形成の分子メカニズムとして、[[微小管]]ダイナミクスの制御が報告されている。CRMP2は[[チューブリン]]ヘテロ二量体と結合して微小管の重合を促進すること、また、この微小管重合活性がCRMP2により誘導される軸索伸長に必要であることが明らかになっている<ref name="ref13"><pubmed> 12134159 </pubmed></ref>。CRMP2のチューブリンへの結合はダイナミックに制御されており、Sema3A受容体である[[ニューロピリン]]-1(NP-1)や[[プレキシン]]A(PlexA)が[[Rac]]1を活性化し、下流の[[キナーゼ]]に影響を与え、最終的にGSK-3&beta;が活性化され、CRMP2がリン酸化を受ける<ref name="ref11" /><ref name="ref14"><pubmed> 15652488 </pubmed></ref>。リン酸化されたCRMP2はチューブリンへのアフィニティーが弱くなり、軸索の退縮が促進される<ref name="ref14" />(図2)。逆に、[[ニューロトロフィン]]-3や[[脳由来神経成長因子]](BDNF)によりGSK-3&beta;が阻害され、CRMP2のリン酸化が抑制されることで、軸索伸長が促進する<ref name="ref14" />(図2)。また、CRMP2の結合タンパク質として[[Numb]]が同定されており、CRMP2が軸索先端でNumbを介した[[L1]]の[[エンドサイトーシス]]およびリサイクリングに関与する可能性が示唆されている<ref name="ref15"><pubmed> 12942088 </pubmed></ref>。[[Rhoキナーゼ]]がCRMP2をリン酸化することにより、CRMP2がNumbと結合できなくなり、軸索伸長が阻害されることも報告されている<ref name="ref16">'''有村奈利子、木村俊秀、藤井佳代、貝淵弘三'''<br>RhoキナーゼによるCRMP-2のリン酸化とその活性制御について<br>''脳21'':2004 </ref>。  


 CRMP2は[[キネシン]]依存性[[軸索輸送]]にも関与する。CRMP2がチューブリンヘテロ二量体もしくは[[Sra-1]]をキネシン-1につなぎとめ、CRMP2/キネシン-1複合体がチューブリン二量体やSra-1/[[WAVE]]-1複合体の輸送を制御する<ref name="ref17"><pubmed> 16364893 </pubmed></ref><ref name="ref18"><pubmed> 16260607 </pubmed></ref>(図3)。また、[[Trk]]B/Slp1/[[Rab]]27複合体がCRMP2を介してキネシン-1に結合し、これらが順行性輸送されることが報告されている<ref name="ref19"><pubmed> 19460344 </pubmed></ref>(図3)。  
 CRMP2は[[キネシン]]依存性[[軸索輸送]]にも関与する。CRMP2がチューブリンヘテロ二量体もしくは[[Sra-1]]をキネシン-1につなぎとめ、CRMP2/キネシン-1複合体がチューブリン二量体やSra-1/[[WAVE]]-1複合体の輸送を制御する<ref name="ref17"><pubmed> 16364893 </pubmed></ref><ref name="ref18"><pubmed> 16260607 </pubmed></ref>(図3)。また、[[TrkB]]/Slp1/[[Rabファミリー低分子量Gタンパク質|Rab27]]複合体がCRMP2を介してキネシン-1に結合し、これらが順行性輸送されることが報告されている<ref name="ref19"><pubmed> 19460344 </pubmed></ref>(図3)。  


 CRMP2の[[カルシウム|Ca<sup>2+</sup>]]ホメオスタシスへの関与としては、CRMP2が直接的に[[CaV2.2]](N型電位依存性[[カルシウムチャネル]])と結合すると、[[シナプス前部]]の膜表面でのCaV2.2の局在が増加してCa<sup>2+</sup>の流入が増加することにより、[[神経伝達物質]]の放出が増加することが報告されている<ref name="ref20"><pubmed> 19755421 </pubmed></ref>。  
 CRMP2の[[カルシウム|Ca<sup>2+</sup>]]ホメオスタシスへの関与としては、CRMP2が直接的に[[CaV2.2]](N型電位依存性[[カルシウムチャネル]])と結合すると、[[シナプス前部]]の膜表面でのCaV2.2の局在が増加してCa<sup>2+</sup>の流入が増加することにより、[[神経伝達物質]]の放出が増加することが報告されている<ref name="ref20"><pubmed> 19755421 </pubmed></ref>。  

案内メニュー