16,040
回編集
細 (→Seurat) |
細 (→次元圧縮) |
||
80行目: | 80行目: | ||
====次元圧縮==== | ====次元圧縮==== | ||
このような品質管理、ノーマライゼーションの過程を経て<ref><pubmed>28504683</pubmed></ref>、scRNA-seqのデータ解析において、最初に行うのが、[[次元圧縮]] (dimensionality reduction)である<ref><pubmed>30617341</pubmed></ref><ref><pubmed>31780648</pubmed></ref><ref><pubmed>31955711</pubmed></ref><ref><pubmed>31823809</pubmed></ref>。主成分分析 (Principal component analysis, PCA)、更に発展させた均一マニフォールド近似と投影(Uniform Manifold Approximation and Projection, UMAP)、Diffusion maps<ref><pubmed> 26002886 | このような品質管理、ノーマライゼーションの過程を経て<ref><pubmed>28504683</pubmed></ref>、scRNA-seqのデータ解析において、最初に行うのが、[[次元圧縮]] (dimensionality reduction)である<ref><pubmed>30617341</pubmed></ref><ref><pubmed>31780648</pubmed></ref><ref><pubmed>31955711</pubmed></ref><ref><pubmed>31823809</pubmed></ref>。主成分分析 (Principal component analysis, PCA)、更に発展させた均一マニフォールド近似と投影(Uniform Manifold Approximation and Projection, UMAP)、Diffusion maps<ref><pubmed> 26002886 | ||
</pubmed></ref>, t分布型確率的近傍埋込み (t-distributed Stochastic Neighbor Embedding, tSNE)などの手法が用いられる。 | </pubmed></ref>, t分布型確率的近傍埋込み (t-distributed Stochastic Neighbor Embedding, tSNE)などの手法が用いられる。 特に、[http://www.jmlr.org/papers/v9/vandermaaten08a.html tSNE]と[https://arxiv.org/abs/1802.03426 UMAP]は、高次元データを低次元の点の集合として可視化することで、それぞれの細胞の持つ遺伝子発現状態の類似度についての直観的な表示が可能でありしばしば用いられる('''図3''')。tSNEよりUMAPの方が迅速に類似集団間の関係が明確になるので、最近はUMAPを利用することが多くなってきている。次に、[[Louvainアルゴリズム]]などでクラスタリング([[コミュニティ分割]])を行いグラフ上に表示できる('''図3'''の色分け)。こうして、異なる転写状態を示す細胞の集合が別のクラスターとして表示され、同定可能になる<ref><pubmed>31500660</pubmed></ref>。 | ||
[[ファイル:scFig3.jpg|サムネイル|250px|'''図3. tSNEとUMAPによる同じデータの可視化'''<br>網膜(ニワトリ)の視細胞のデータを用いて執筆者が作製[https://doi.org/10.1101/2020.10.09.333633]。]] | [[ファイル:scFig3.jpg|サムネイル|250px|'''図3. tSNEとUMAPによる同じデータの可視化'''<br>網膜(ニワトリ)の視細胞のデータを用いて執筆者が作製[https://doi.org/10.1101/2020.10.09.333633]。]] | ||
==データ解析== | ==データ解析== | ||
===細胞クラスターの解釈とマーカー遺伝子候補の発見=== | ===細胞クラスターの解釈とマーカー遺伝子候補の発見=== |