16,039
回編集
細 (→トランスクリプトーム) |
細 (→多様なプラットフォーム) |
||
29行目: | 29行目: | ||
増幅バイアス除去のアプローチとして特に重要なのは、2011年に発表された核酸配列バーコードを利用した方法で、分子識別子(unique molecular identifiers: UMI)を持つcDNAを増幅させ、次世代シーケンサー後の情報処理を用いるものであると考えられる<ref><pubmed>22101854</pubmed></ref>。この方法では[[逆転写]]反応の際、ランダム塩基配列から構成されるUMIをcDNA末端に付加した後、増幅反応、次世代シーケンサーを行い、cDNA配列とUMI配列の両方を読む。cDNAにはRNA1分子に1つのUMIが付加されるので、同一のUMIを持っていれば、逆転写時に同一のcDNA由来とカウントする。UMIをカウントすることで、増幅前のmRNAのコピー数を知ることができる<ref name=Islam2011><pubmed>21543516</pubmed></ref><ref><pubmed>24363023</pubmed></ref><ref name=Gierahn2017><pubmed>28192419</pubmed></ref> <ref><pubmed>29474909</pubmed></ref><ref name=Cao2017><pubmed>28818938</pubmed></ref><ref name=Rosenberg2018><pubmed>29545511</pubmed></ref>。 | 増幅バイアス除去のアプローチとして特に重要なのは、2011年に発表された核酸配列バーコードを利用した方法で、分子識別子(unique molecular identifiers: UMI)を持つcDNAを増幅させ、次世代シーケンサー後の情報処理を用いるものであると考えられる<ref><pubmed>22101854</pubmed></ref>。この方法では[[逆転写]]反応の際、ランダム塩基配列から構成されるUMIをcDNA末端に付加した後、増幅反応、次世代シーケンサーを行い、cDNA配列とUMI配列の両方を読む。cDNAにはRNA1分子に1つのUMIが付加されるので、同一のUMIを持っていれば、逆転写時に同一のcDNA由来とカウントする。UMIをカウントすることで、増幅前のmRNAのコピー数を知ることができる<ref name=Islam2011><pubmed>21543516</pubmed></ref><ref><pubmed>24363023</pubmed></ref><ref name=Gierahn2017><pubmed>28192419</pubmed></ref> <ref><pubmed>29474909</pubmed></ref><ref name=Cao2017><pubmed>28818938</pubmed></ref><ref name=Rosenberg2018><pubmed>29545511</pubmed></ref>。 | ||
===多様なプラットフォーム=== | ===多様なプラットフォーム=== | ||
細胞を分別するプラットフォームには、マイクロピペットによる捕獲、[[セルソーター]]、[[レーザー捕獲]]などを用いるマルチウェル法、あるいは半導体集積回路様の製作技術で作った流体回路を利用するFluidigm | 細胞を分別するプラットフォームには、マイクロピペットによる捕獲、[[セルソーター]]、[[レーザー捕獲]]などを用いるマルチウェル法、あるいは半導体集積回路様の製作技術で作った流体回路を利用するFluidigm C1の装置([https://jp.fluidigm.com C1 Single- Cell Auto Prep])、更にドロップレット使用(下記)などがある<ref><pubmed>30405621</pubmed></ref><ref><pubmed>33247933</pubmed></ref>。これらは、SMART-seqと組み合わせて利用されることが多い。SMART-seqプロトコールの特徴は、全長mRNAのトランスクリプトーム情報を得ることができることであり、mRNAのスプライシングバリアントなどのアイソフォーム、SNPsの情報を利用したアリル特異的発現、変異の検出にも利用できる。また、それぞれ細胞ごとの反応を独立した場所で行うため、反応中に別の細胞の反応と混じる可能性が低い。小型のナノウェルを用いるSeq-Wellも同様に反応自体が混じる可能性が低い<ref name=Gierahn2017><pubmed>28192419</pubmed></ref>。これらの点が、次に説明するドロップレットを使用して3’末端のみを標的にしたscRNA-seqと比べた場合の長所であるが、その高コスト(1細胞あたり数十ドル)と処理可能な細胞数の少なさが短所である。 | ||
これらとは別に、ハイスループットで安価な方法として、それぞれの細胞を独立に標識するのではなく、プールされた細胞を異なるウェルにランダムに振り分け、ウェル固有のバーコードで転写物を標識していく操作を複数回繰り返していくことで細胞を区別するSplit-seqやsci-RNA-seq3などの方法も用いられている<ref name=Rosenberg2018><pubmed>29545511</pubmed></ref><ref><pubmed>30787437</pubmed></ref>。 | これらとは別に、ハイスループットで安価な方法として、それぞれの細胞を独立に標識するのではなく、プールされた細胞を異なるウェルにランダムに振り分け、ウェル固有のバーコードで転写物を標識していく操作を複数回繰り返していくことで細胞を区別するSplit-seqやsci-RNA-seq3などの方法も用いられている<ref name=Rosenberg2018><pubmed>29545511</pubmed></ref><ref><pubmed>30787437</pubmed></ref>。 |