「シングルセルRNAシーケンシング」の版間の差分

ナビゲーションに移動 検索に移動
PMID:33393903をつかって、<ref name=Yamagata2021></ref>に変更
編集の要約なし
(PMID:33393903をつかって、<ref name=Yamagata2021></ref>に変更)
 
117行目: 117行目:
==scRNA-seqの展望==
==scRNA-seqの展望==
===神経系の多様性と進化===
===神経系の多様性と進化===
 NGSを用いることで、どんな生物種にも適用可能なscRNA-seqは、既に多様な生物の神経系の細胞の理解、更には種間の相同性や差異の研究に利用されており、神経系の進化を細胞レベルで考察するのに有用であろう(例、[[線虫]]<ref name=Cao2017><pubmed>28818938</pubmed></ref>、[[ショウジョウバエ]]<ref><pubmed>29909982</pubmed></ref><ref><pubmed>29149607</pubmed></ref><ref><pubmed>30703584</pubmed></ref><ref name=Konstantinides2018><pubmed>29909983</pubmed></ref><ref><pubmed>33125872</pubmed></ref>、[[カタユウレイボヤ]]''Ciona intestinalis''<ref><pubmed>30069052</pubmed></ref><ref><pubmed>30228204</pubmed></ref>、[[ゼブラフィッシュ]]<ref><pubmed>31018142</pubmed></ref><ref><pubmed>30929901</pubmed></ref>、[[アカミミガメ]]''Trachemys scripta elegans''、[[トカゲ]]''Pogona vitticeps'', PV<ref><pubmed>29724907</pubmed></ref>、[[ニワトリ]][https://doi.org/10.1101/2020.10.09.333633]、[[霊長類]]<ref><pubmed>30730291</pubmed></ref><ref><pubmed>31619793</pubmed></ref>[https://doi.org/10.1101/2020.03.31.016972])。ただ、遺伝子やトランスクリプトームの研究が進んでいる生物種では比較的容易であるが、遺伝子のアノテーションが十分でない生物種を用いる場合、scRNA-seqのデータ解析は困難を伴う。また種を超えた細胞タイプの相同性の理解には様々な工夫が必要である<ref><pubmed>31552245</pubmed></ref><ref name=Peng2019><pubmed>30712875</pubmed></ref>[https://doi.org/10.1101/2020.03.31.016972]。
 NGSを用いることで、どんな生物種にも適用可能なscRNA-seqは、既に多様な生物の神経系の細胞の理解、更には種間の相同性や差異の研究に利用されており、神経系の進化を細胞レベルで考察するのに有用であろう(例、[[線虫]]<ref name=Cao2017><pubmed>28818938</pubmed></ref>、[[ショウジョウバエ]]<ref><pubmed>29909982</pubmed></ref><ref><pubmed>29149607</pubmed></ref><ref><pubmed>30703584</pubmed></ref><ref name=Konstantinides2018><pubmed>29909983</pubmed></ref><ref><pubmed>33125872</pubmed></ref>、[[カタユウレイボヤ]]''Ciona intestinalis''<ref><pubmed>30069052</pubmed></ref><ref><pubmed>30228204</pubmed></ref>、[[ゼブラフィッシュ]]<ref><pubmed>31018142</pubmed></ref><ref><pubmed>30929901</pubmed></ref>、[[アカミミガメ]]''Trachemys scripta elegans''、[[トカゲ]]''Pogona vitticeps'', PV<ref><pubmed>29724907</pubmed></ref>、[[ニワトリ]]<ref name=Yamagata2021></ref>、[[霊長類]]<ref><pubmed>30730291</pubmed></ref><ref><pubmed>31619793</pubmed></ref>[https://doi.org/10.1101/2020.03.31.016972])。ただ、遺伝子やトランスクリプトームの研究が進んでいる生物種では比較的容易であるが、遺伝子のアノテーションが十分でない生物種を用いる場合、scRNA-seqのデータ解析は困難を伴う。また種を超えた細胞タイプの相同性の理解には様々な工夫が必要である<ref><pubmed>31552245</pubmed></ref><ref name=Peng2019><pubmed>30712875</pubmed></ref>[https://doi.org/10.1101/2020.03.31.016972]。
===データベースと統合===
===データベースと統合===
 獲得されたscRNA-seqのデータは様々な目的で利用できるので、データベース化し利用できるようにする必要がある。神経系のトランスクリプトーム一般のデータベースが多数公開されており<ref><pubmed>29437890</pubmed></ref>、scRNA-seqのデータも基本的にNCBIの[https://www.ncbi.nlm.nih.gov/geo/ Gene Expression Omnibus]に登録されている。また、オープンサイエンス推進のためにcommon coordinate framework (CCF) やcentral annotation platform (CAP)という概念のもと、特にscRNA-seqを意識したものとして、米国のBRAIN Initiative Cell Census Consortium<ref><pubmed>29096072</pubmed></ref>、Human Cell Atlas Projectの[https://data.humancellatlas.org Human Cell Atlas Data Portal]、そのマウス版である[https://genome.ucsc.edu/cgi-bin/hgTrackUi?db=mm10&g=tabulaMuris Tabula Muris]<ref><pubmed>30283141</pubmed></ref>やSten Linnarssonラボの[http://mousebrain.org マウス脳発生データベース]、アレン脳研究所の[https://portal.brain-map.org Allen Brain Atlas]、ブロード研究所の[https://singlecell.broadinstitute.org/ Single Cell Portal]などのデータベースが稼働している。また、異なった方法や実験で得られたscRNA-seqのデータや後述の複数モダリティのシングルセルオミクスのデータを体系的に比較することも重要であり、CCA (Canonical correlation analysis)<ref name=Butler2018><pubmed>29608179</pubmed></ref>, Seurat 3.0以降に組み込まれたMMN (Mutual Nearest Neighbors)、LIGER<ref><pubmed>31178122</pubmed></ref> 、Harmony<ref><pubmed>31740819</pubmed></ref>  、MetaNeighber<ref><pubmed>29491377</pubmed></ref>、Conos<ref><pubmed>31308548</pubmed></ref>[https://doi.org/10.1101/2020.05.22.111161]のようなアルゴリズムが開発され、後述の複数モダリティのシングルセルオミクスを組み込んだ[https://biccn.org 統合サイト]もでき始めている。またデータベースを利用して発現類似性検索も研究されている<ref><pubmed>29608555</pubmed></ref><ref><pubmed>30744683</pubmed></ref>。
 獲得されたscRNA-seqのデータは様々な目的で利用できるので、データベース化し利用できるようにする必要がある。神経系のトランスクリプトーム一般のデータベースが多数公開されており<ref><pubmed>29437890</pubmed></ref>、scRNA-seqのデータも基本的にNCBIの[https://www.ncbi.nlm.nih.gov/geo/ Gene Expression Omnibus]に登録されている。また、オープンサイエンス推進のためにcommon coordinate framework (CCF) やcentral annotation platform (CAP)という概念のもと、特にscRNA-seqを意識したものとして、米国のBRAIN Initiative Cell Census Consortium<ref><pubmed>29096072</pubmed></ref>、Human Cell Atlas Projectの[https://data.humancellatlas.org Human Cell Atlas Data Portal]、そのマウス版である[https://genome.ucsc.edu/cgi-bin/hgTrackUi?db=mm10&g=tabulaMuris Tabula Muris]<ref><pubmed>30283141</pubmed></ref>やSten Linnarssonラボの[http://mousebrain.org マウス脳発生データベース]、アレン脳研究所の[https://portal.brain-map.org Allen Brain Atlas]、ブロード研究所の[https://singlecell.broadinstitute.org/ Single Cell Portal]などのデータベースが稼働している。また、異なった方法や実験で得られたscRNA-seqのデータや後述の複数モダリティのシングルセルオミクスのデータを体系的に比較することも重要であり、CCA (Canonical correlation analysis)<ref name=Butler2018><pubmed>29608179</pubmed></ref>, Seurat 3.0以降に組み込まれたMMN (Mutual Nearest Neighbors)、LIGER<ref><pubmed>31178122</pubmed></ref> 、Harmony<ref><pubmed>31740819</pubmed></ref>  、MetaNeighber<ref><pubmed>29491377</pubmed></ref>、Conos<ref><pubmed>31308548</pubmed></ref>[https://doi.org/10.1101/2020.05.22.111161]のようなアルゴリズムが開発され、後述の複数モダリティのシングルセルオミクスを組み込んだ[https://biccn.org 統合サイト]もでき始めている。またデータベースを利用して発現類似性検索も研究されている<ref><pubmed>29608555</pubmed></ref><ref><pubmed>30744683</pubmed></ref>。

案内メニュー