135
回編集
Kentaro Katahira (トーク | 投稿記録) 細編集の要約なし |
Kentaro Katahira (トーク | 投稿記録) 細編集の要約なし |
||
59行目: | 59行目: | ||
<math>\frac{\pi \sigma^2}{a^2} e^{-zv/\sigma^2} \sum_{k=1}^\infty k \sin (\frac{\pi z k}{a}) e^{-\frac{1}{2} (v^2 / \sigma^2 + \pi^2 k^2 \sigma^2/a^2)t} </math> | <math>\frac{\pi \sigma^2}{a^2} e^{-zv/\sigma^2} \sum_{k=1}^\infty k \sin (\frac{\pi z k}{a}) e^{-\frac{1}{2} (v^2 / \sigma^2 + \pi^2 k^2 \sigma^2/a^2)t} </math> | ||
で与えられる。境界<math>a</math>に到達し反応Aが起こり,その反応時間が<math> T_{er} + t</math>となる確率密度は,上の式において<math>v</math>を<math>-v</math>で, <math>z</math> を<math>a -z</math>で置き換えることで得られる。図Xの上下の曲線はこれらの式により得られた条件付きの確率密度関数である。シミュレーションにより得た反応時間のヒストグラムもサンプルが増えるにつれてこの関数に近づいていくことがわかる | で与えられる。境界<math>a</math>に到達し反応Aが起こり,その反応時間が<math> T_{er} + t</math>となる確率密度は,上の式において<math>v</math>を<math>-v</math>で, <math>z</math> を<math>a -z</math>で置き換えることで得られる。図Xの上下の曲線はこれらの式により得られた条件付きの確率密度関数である。シミュレーションにより得た反応時間のヒストグラムもサンプルが増えるにつれてこの関数に近づいていくことがわかる 。 | ||
==モデルフィッティング== | ==モデルフィッティング== | ||
上記のように解析的に得られる反応時間の分布が実際のデータに近づくようにパラメータを調整することで,明示的にドリフト拡散過程をシミュレートせずともモデルのパラメータを推定することができる。また,複数ある候補のモデルからデータをよりよく説明するモデルを選択することも可能となる。パラメータの推定やモデル選択をする作業を総称してモデルフィッティングと呼ぶ。 | |||
実験で収集された反応データに対して,モデルフィッティングをする方法として,<math>\chi^{2}</math>最小化,最尤法,重み付き最小二乗法,ベイズ推定等がある<ref><pubmed> 12412886</pubmed></ref>。モデルフィッティング用のソフトウェアとしては,以下がある。 | 実験で収集された反応データに対して,モデルフィッティングをする方法として,<math>\chi^{2}</math>最小化,最尤法,重み付き最小二乗法,ベイズ推定等がある<ref><pubmed> 12412886</pubmed></ref>。モデルフィッティング用のソフトウェアとしては,以下がある。 | ||
回編集