16,039
回編集
細 (→関連項目) |
細 (→速度論的パラメータの求め方) |
||
93行目: | 93行目: | ||
<br> <math>\frac{1}{v} = \frac{K_m}{V_{max}}\frac{1}{[S]} + \frac{1}{V_{max}}</math> (14) | <br> <math>\frac{1}{v} = \frac{K_m}{V_{max}}\frac{1}{[S]} + \frac{1}{V_{max}}</math> (14) | ||
<br> とすれば、<math>1 / [S]</math>に対する<math>1 / v</math>のプロットが直線となる。従ってミカエリス・メンテンの式に従う酵素では、基質濃度の逆数に対して、酵素活性の逆数をプロットすれば'''図2'''に示すような直線プロット(ラインウィーバー・バークプロットまたは二重逆数プロット)となり、このプロットの<math>x</math>切片が<math>1/Km</math> | <br> とすれば、<math>1 / [S]</math>に対する<math>1 / v</math>のプロットが直線となる。従ってミカエリス・メンテンの式に従う酵素では、基質濃度の逆数に対して、酵素活性の逆数をプロットすれば'''図2'''に示すような直線プロット(ラインウィーバー・バークプロットまたは二重逆数プロット)となり、このプロットの<math>x</math>切片が<math>1/Km</math>、<math>y</math>切片が<math>1 / V_{max}</math>を与える。この方法はグラフ用紙さえあれば簡単にできるので以前はよく行われたが、低基質濃度のデータの誤差が大きく出るなどの欠点もあり、パソコンが普及した現在では、ミカエリス・メンテンプロットを適当なソフトウェアを用いて双曲線にフィッティングして、直接(7)式または(13)式の各パラメータを求めるdirect fitting法によることが多くなった。 | ||
[[Image:AtsuhikoIshida fig 2.jpg|thumb|300px|''''''図2'''. ラインウィーバー・バークプロット(二重逆数プロット)''']] <br> (7)式または(13)式(ミカエリス・メンテンの式またはブリッグス・ホールデンの式)は多くの酵素にあてはまる便利な式であるが、(1)の反応スキームに従うことを前提にしているので、当然これにあてはまらない場合も存在する。そのような場合に(7)式または(13)式を無理にあてはめて解析することは、誤った結論を導く可能性があるので注意が必要である。そのような場合の扱いに関しては、例えば以下の文献を参照されたい<ref>''' 堀尾武一、山下仁平 (1981).'''<br>蛋白質・酵素の基礎実験法, ''南江堂 (東京)''</ref>。 | [[Image:AtsuhikoIshida fig 2.jpg|thumb|300px|''''''図2'''. ラインウィーバー・バークプロット(二重逆数プロット)''']] <br> (7)式または(13)式(ミカエリス・メンテンの式またはブリッグス・ホールデンの式)は多くの酵素にあてはまる便利な式であるが、(1)の反応スキームに従うことを前提にしているので、当然これにあてはまらない場合も存在する。そのような場合に(7)式または(13)式を無理にあてはめて解析することは、誤った結論を導く可能性があるので注意が必要である。そのような場合の扱いに関しては、例えば以下の文献を参照されたい<ref>''' 堀尾武一、山下仁平 (1981).'''<br>蛋白質・酵素の基礎実験法, ''南江堂 (東京)''</ref>。 | ||
== 速度論的パラメータの意味 == | == 速度論的パラメータの意味 == |