16,039
回編集
細 (→速度論的パラメータの求め方) |
細 (→誘導法) |
||
27行目: | 27行目: | ||
<math> E + S \overset{k_1}{\underset{k_2}{\rightleftarrows}} ES \xrightarrow{k_3} E + P</math> (1) | <math> E + S \overset{k_1}{\underset{k_2}{\rightleftarrows}} ES \xrightarrow{k_3} E + P</math> (1) | ||
ここに<math>E</math>は酵素、<math>S</math>は基質、<math>P</math>は生成物を表す。この時、<math>k_1</math>、<math>k_2</math>は<math>k_3</math>に比べて十分に大きく、<math>ES</math>、<math>E</math>、<math>S</math>は[[wj:平衡状態|平衡状態]]にあって、<math>k_3</math>を[[wj:速度定数|速度定数]]とする過程が全体の酵素反応の[[wj:律速段階|律速段階]]であると仮定すれば、ES complexの[[wj:解離定数|解離平衡定数]]<math> | ここに<math>E</math>は酵素、<math>S</math>は基質、<math>P</math>は生成物を表す。この時、<math>k_1</math>、<math>k_2</math>は<math>k_3</math>に比べて十分に大きく、<math>ES</math>、<math>E</math>、<math>S</math>は[[wj:平衡状態|平衡状態]]にあって、<math>k_3</math>を[[wj:速度定数|速度定数]]とする過程が全体の酵素反応の[[wj:律速段階|律速段階]]であると仮定すれば、ES complexの[[wj:解離定数|解離平衡定数]]<math>K_d</math>は | ||
<br> <math> K_d = \frac{[E][S]}{[ES]} = \frac{k_2}{k_1}</math> (2) | <br> <math> K_d = \frac{[E][S]}{[ES]} = \frac{k_2}{k_1}</math> (2) |