16,040
回編集
細 (→細胞内局在) |
|||
31行目: | 31行目: | ||
神経細胞では、分子と小器官の輸送メカニズムが高度に発達して、細胞体とシナプスを繋ぐ[[細胞内輸送システム]]が[[ミトコンドリア]]・[[シナプス小胞]]・[[脂質]]・タンパク質等を両方向に運んでいる。mRNAの細胞内輸送に関しては、RNAとタンパク質から成る膜に囲まれない複合体である「[[RNA輸送顆粒]]」の状態で、[[微小管]]等の[[細胞骨格]]上を通って輸送される<ref name=Elvira2006><pubmed>16352523</pubmed></ref><ref name=Kanai2004><pubmed>15312650</pubmed></ref><ref name=Kar2018><pubmed>28593814</pubmed></ref><ref name=Krichevsky2001><pubmed>11719208</pubmed></ref> 。 | 神経細胞では、分子と小器官の輸送メカニズムが高度に発達して、細胞体とシナプスを繋ぐ[[細胞内輸送システム]]が[[ミトコンドリア]]・[[シナプス小胞]]・[[脂質]]・タンパク質等を両方向に運んでいる。mRNAの細胞内輸送に関しては、RNAとタンパク質から成る膜に囲まれない複合体である「[[RNA輸送顆粒]]」の状態で、[[微小管]]等の[[細胞骨格]]上を通って輸送される<ref name=Elvira2006><pubmed>16352523</pubmed></ref><ref name=Kanai2004><pubmed>15312650</pubmed></ref><ref name=Kar2018><pubmed>28593814</pubmed></ref><ref name=Krichevsky2001><pubmed>11719208</pubmed></ref> 。 | ||
[[RNA輸送顆粒]]に含まれる[[RNA結合タンパク質]]はこれまでに多く同定されている。特に注目されているタンパク質は、神経疾患に関連し軸索内で検出されるRNA結合タンパク質である[[TAR DNA-binding protein of 43 kDa]] ([[TDP-43]])・[[Fused-in sarcoma]] ([[FUS]]) / [[Translocated in liposarcoma]] ([[TLS]])・[[survival motor neuron protein|survival motor neuron]] ([[SMN]]) protein・ [[splicing factor proline and glutamine rich]] ([[SFPQ]])である。TDP-43とFUS/TLSは[[筋萎縮性側索硬化症]]([[ALS]])の患者において変異が見られる。SMN遺伝子の欠損は[[脊髄性筋萎縮症]]([[SMA]])を引き起こす。また、SFPQの軸索からの喪失は[[末梢神経]]障害に寄与する<ref name=Alami2014><pubmed>24507191</pubmed></ref><ref name=Cosker2016><pubmed>27019013</pubmed></ref><ref name=Khalil2018><pubmed>30171200</pubmed></ref><ref name=Pease-Raissi2017><pubmed>29024661</pubmed></ref><ref name=Rotem2017><pubmed>28300211</pubmed></ref><ref name=Saal2014><pubmed>25246652</pubmed></ref> 。 | [[RNA輸送顆粒]]に含まれる[[RNA結合タンパク質]]はこれまでに多く同定されている。特に注目されているタンパク質は、神経疾患に関連し軸索内で検出されるRNA結合タンパク質である[[TAR DNA-binding protein of 43 kDa]] ([[TDP-43]])・[[Fused-in sarcoma]] ([[FUS]]) / [[Translocated in liposarcoma]] ([[TLS]])・[[survival motor neuron protein|survival motor neuron]] ([[SMN]]) protein・ [[splicing factor proline and glutamine rich]] ([[SFPQ]])である。TDP-43とFUS/TLSは[[筋萎縮性側索硬化症]]([[ALS]])の患者において変異が見られる。SMN遺伝子の欠損は[[脊髄性筋萎縮症]]([[脊髄性筋萎縮症|SMA]])を引き起こす。また、SFPQの軸索からの喪失は[[末梢神経]]障害に寄与する<ref name=Alami2014><pubmed>24507191</pubmed></ref><ref name=Cosker2016><pubmed>27019013</pubmed></ref><ref name=Khalil2018><pubmed>30171200</pubmed></ref><ref name=Pease-Raissi2017><pubmed>29024661</pubmed></ref><ref name=Rotem2017><pubmed>28300211</pubmed></ref><ref name=Saal2014><pubmed>25246652</pubmed></ref> 。 | ||
これまでに、機能的に関連するタンパク質をコードするmRNA群がRNA結合タンパク質によって同じ輸送顆粒上に存在するメカニズムの例<ref name=Preitner2014><pubmed>25036633</pubmed></ref> ; <ref name=Mili2008><pubmed>18451862</pubmed></ref> )が示され、[[液-液相分離]]がRNA輸送顆粒の形成制御メカニズムとして提唱されたが<ref name=Ohashi2020><pubmed>31978946</pubmed></ref> 、その詳細は解明されていない。 | これまでに、機能的に関連するタンパク質をコードするmRNA群がRNA結合タンパク質によって同じ輸送顆粒上に存在するメカニズムの例<ref name=Preitner2014><pubmed>25036633</pubmed></ref> ; <ref name=Mili2008><pubmed>18451862</pubmed></ref> )が示され、[[液-液相分離]]がRNA輸送顆粒の形成制御メカニズムとして提唱されたが<ref name=Ohashi2020><pubmed>31978946</pubmed></ref> 、その詳細は解明されていない。 | ||
67行目: | 67行目: | ||
[[ファイル:MRNA Fig2.png|400px|サムネイル|'''図2. mRNAの内部配列における化学修飾の例'''<br>mRNAの内部配列には様々な化学修飾塩基が存在し、mRNAの安定性・輸送・翻訳を調節している;5-メチルシトシン(m5C)、N 1-メチルアデノシン(m1A)、N 6-メチルアデノシン (m6A)、シュードウリジン(Ψ)。BioRenderより作成。]] | [[ファイル:MRNA Fig2.png|400px|サムネイル|'''図2. mRNAの内部配列における化学修飾の例'''<br>mRNAの内部配列には様々な化学修飾塩基が存在し、mRNAの安定性・輸送・翻訳を調節している;5-メチルシトシン(m5C)、N 1-メチルアデノシン(m1A)、N 6-メチルアデノシン (m6A)、シュードウリジン(Ψ)。BioRenderより作成。]] | ||
== 化学修飾 == | == 化学修飾 == | ||
RNAをターゲットとした化学修飾が自然界に多種多様に存在することは以前から知られていた。近年、その遺伝子発現制御メカニズムの全貌を表す「[[エピトランスクリプトミクス]]」研究分野が隆盛している。 | RNAをターゲットとした化学修飾が自然界に多種多様に存在することは以前から知られていた。近年、その遺伝子発現制御メカニズムの全貌を表す「[[エピトランスクリプトミクス]]」研究分野が隆盛している。 |