「眼優位性」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
編集の要約なし
 
18行目: 18行目:
[[ファイル:Yoshiohata_fig_1.jpg|350px|thumb|'''図1.視覚伝導路の模式図'''<br>ネコ視覚伝導路を示す。視野の半分(実線部分)の情報は両眼で捉えられた後、一側の外側膝状体の異なる層に伝達される。外側膝状体ニューロンはV1のⅣ層に投射する。]]
[[ファイル:Yoshiohata_fig_1.jpg|350px|thumb|'''図1.視覚伝導路の模式図'''<br>ネコ視覚伝導路を示す。視野の半分(実線部分)の情報は両眼で捉えられた後、一側の外側膝状体の異なる層に伝達される。外側膝状体ニューロンはV1のⅣ層に投射する。]]


 [[哺乳類]]では、網膜によって受容された視覚情報は、[[視床]]の[[外側膝状体]](lateral geniculate nucleus、LGN)を経て大脳皮質一次視覚野(以下,V1)に伝達される(図1)。この時、網膜の耳側領域由来の視神経軸索は同側の外側膝状体へ、一方、鼻側網膜由来のものは対側の外側膝状体へ投射するため、一側の外側膝状体には対側視野の情報が両方の眼から伝達される。両眼からの入力は外側膝状体内の別々の層に伝達されるため、外側膝状体のニューロンは左右どちらかの眼に与えた光刺激にのみ反応する。次に外側膝状体のニューロンはV1に軸索を投射するが、大脳皮質の6層構造のうち第Ⅳ層に主に入力する。[[霊長類]]や[[ネコ]]ではそれぞれの眼からの入力軸索がⅣ層内で分離しているので(後述「眼優位コラム」参照)、Ⅳ層のニューロンの多くは一方の眼からの情報だけを受け取り、外側膝状体と同じく単眼性の反応を示す。しかしⅣ層から先の情報伝達では両眼の入力が個々のV1ニューロンに収束するため、Ⅱ/Ⅲ層やⅤ、Ⅵ層のニューロンは両眼に反応する<ref><pubmed> 4966457 </pubmed></ref><ref name="catV1"><pubmed> 14449617 </pubmed></ref>。[[げっ歯類]]では両眼入力の分離は認められず、Ⅳ層の段階で多くの両眼反応ニューロンが見られる。
 [[哺乳類]]では、網膜によって受容された視覚情報は、[[視床]]の[[外側膝状体]](lateral geniculate nucleus、LGN)を経て大脳皮質一次視覚野(以下,V1)に伝達される('''図1''')。この時、網膜の耳側領域由来の視神経軸索は同側の外側膝状体へ、一方、鼻側網膜由来のものは対側の外側膝状体へ投射するため、一側の外側膝状体には対側視野の情報が両方の眼から伝達される。両眼からの入力は外側膝状体内の別々の層に伝達されるため、外側膝状体のニューロンは左右どちらかの眼に与えた光刺激にのみ反応する。次に外側膝状体のニューロンはV1に軸索を投射するが、大脳皮質の6層構造のうち第Ⅳ層に主に入力する。[[霊長類]]や[[ネコ]]ではそれぞれの眼からの入力軸索がⅣ層内で分離しているので(後述「眼優位コラム」参照)、Ⅳ層のニューロンの多くは一方の眼からの情報だけを受け取り、外側膝状体と同じく単眼性の反応を示す。しかしⅣ層から先の情報伝達では両眼の入力が個々のV1ニューロンに収束するため、Ⅱ/Ⅲ層やⅤ、Ⅵ層のニューロンは両眼に反応する<ref><pubmed> 4966457 </pubmed></ref><ref name="catV1"><pubmed> 14449617 </pubmed></ref>。[[げっ歯類]]では両眼入力の分離は認められず、Ⅳ層の段階で多くの両眼反応ニューロンが見られる。


 個々のニューロンが左右どちらの眼にどの程度強く反応するかはニューロンによって異なり、両眼に等しく反応するものから、どちらかにだけ反応するものまで存在する。このどちらの眼により強く反応するかという性質を眼優位性と呼び、慣習的に、7段階にグループ分けして表すことが多い(対側の眼にのみ反応するものを1、同側にのみ反応するものを7、両眼に等しく反応するものを4とする)。ネコや霊長類では眼優位性の分布は両眼について対称に近いのに対して、げっ歯類では対側眼に反応するニューロンが多く、眼優位性の分布は対側眼側に大きく偏っている<ref><pubmed> 1112925 </pubmed></ref> 。V1から投射を受ける[[二次視覚野]]では、両眼入力の収束はさらに進み、両眼反応を示すニューロンの割合がより多くなる<ref><pubmed> 21263036 </pubmed></ref>。
 個々のニューロンが左右どちらの眼にどの程度強く反応するかはニューロンによって異なり、両眼に等しく反応するものから、どちらかにだけ反応するものまで存在する。このどちらの眼により強く反応するかという性質を眼優位性と呼び、慣習的に、7段階にグループ分けして表すことが多い(対側の眼にのみ反応するものを1、同側にのみ反応するものを7、両眼に等しく反応するものを4とする)。ネコや霊長類では眼優位性の分布は両眼について対称に近いのに対して、げっ歯類では対側眼に反応するニューロンが多く、眼優位性の分布は対側眼側に大きく偏っている<ref><pubmed> 1112925 </pubmed></ref> 。V1から投射を受ける[[二次視覚野]]では、両眼入力の収束はさらに進み、両眼反応を示すニューロンの割合がより多くなる<ref><pubmed> 21263036 </pubmed></ref>。


 視野の同一部位について両眼からの情報が収束することで、[[両眼視差]]を利用した[[奥行き知覚]]が可能になる。実際、ネコや霊長類のV1の多くのニューロンが、両眼視差に選択的な反応を示す<ref><pubmed> 3199191 </pubmed></ref><ref><pubmed> 6065881 </pubmed></ref><ref><pubmed> 5721767 </pubmed></ref>。ただしV1ニューロンは両眼視差を検出するものの、両眼立体視にはさらに高次の視覚野の活動が必要であることもわかっている<ref><pubmed> 17453018 </pubmed></ref>。このようにV1では両眼入力の統合が行われるが、眼優位性と両眼入力の統合は必ずしも一致するものではない。たとえば単眼反応を示すニューロンにおいて、両眼を同時に刺激した場合には、単眼刺激では反応を示さない眼の影響が観察される例もある<ref><pubmed> 3746399 </pubmed></ref>。これは眼優位性は単眼性を示していても、両眼の入力に相互作用があるということを示している。
 視野の同一部位について両眼からの情報が収束することで、[[両眼視差]]を利用した[[奥行き知覚]]が可能になる。実際、ネコや霊長類のV1の多くのニューロンが、両眼視差に選択的な反応を示す<ref><pubmed> 3199191 </pubmed></ref><ref><pubmed> 6065881 </pubmed></ref><ref><pubmed> 5721767 </pubmed></ref>。ただしV1ニューロンは両眼視差を検出するものの、[[両眼立体視]]にはさらに高次の視覚野の活動が必要であることもわかっている<ref><pubmed> 17453018 </pubmed></ref>。このようにV1では両眼入力の統合が行われるが、眼優位性と両眼入力の統合は必ずしも一致するものではない。たとえば単眼反応を示すニューロンにおいて、両眼を同時に刺激した場合には、単眼刺激では反応を示さない眼の影響が観察される例もある<ref><pubmed> 3746399 </pubmed></ref>。これは眼優位性は単眼性を示していても、両眼の入力に相互作用があるということを示している。


==眼優位コラム==
==眼優位コラム==
[[ファイル:Yoshiohata_fig_2.jpg|350px|thumb|'''図2.ヒトの眼優位コラム'''<br>一側眼球を失ったヒトの左視覚野を伸展標本とし、チトクロームオキシダーゼ染色で眼優位コラムを可視化してある。Ⅳ層部分のモンタージュを示す。標本中央部のストライブ構造が眼優位コラムである。Adams et al. (2007)<ref name="humanOcDom" />より引用。]]
[[ファイル:Yoshiohata_fig_2.jpg|350px|thumb|'''図2.ヒトの眼優位コラム'''<br>一側眼球を失ったヒトの左視覚野を伸展標本とし、チトクロームオキシダーゼ染色で眼優位コラムを可視化してある。Ⅳ層部分のモンタージュを示す。標本中央部のストライブ構造が眼優位コラムである。Adams et al. (2007)<ref name="humanOcDom" />より引用。]]


 V1には様々な眼優位性をもつニューロンが存在するが、霊長類やネコでは、それらは皮質内においてランダムに存在するわけではなく、似たような性質の、つまりより強く反応する眼(優位眼)を同じくするニューロンが皮質表面から[[白質]]まで垂直に配列し、'''[[眼優位コラム]]'''と呼ばれる機能構造を形成している。この機能構造は、皮質に垂直に刺入した電極から、様々な深さで同じ眼に強く反応するニューロンが記録されることで明らかとなった<ref name="catV1" />。その他に、一方の眼を刺激した時に活動する皮質領域を、神経活動依存的な[[最初期遺伝子]]の発現<ref><pubmed> 8481787 </pubmed></ref>や、皮質の[[内因性光学信号]]<ref><pubmed> 2165630 </pubmed></ref>により計測すること、さらに[[チトクロームオキシダーゼ]]活性の組織染色<ref><pubmed> 223730 </pubmed></ref>など様々な方法で眼優位コラムを可視化することができる(図2)。
 V1には様々な眼優位性をもつニューロンが存在するが、霊長類やネコでは、それらは皮質内においてランダムに存在するわけではなく、似たような性質の、つまりより強く反応する眼(優位眼)を同じくするニューロンが皮質表面から[[白質]]まで垂直に配列し、'''[[眼優位コラム]]'''と呼ばれる機能構造を形成している。この機能構造は、皮質に垂直に刺入した電極から、様々な深さで同じ眼に強く反応するニューロンが記録されることで明らかとなった<ref name="catV1" />。その他に、一方の眼を刺激した時に活動する皮質領域を、神経活動依存的な[[最初期遺伝子]]の発現<ref><pubmed> 8481787 </pubmed></ref>や、皮質の[[内因性光学信号]]<ref><pubmed> 2165630 </pubmed></ref>により計測すること、さらに[[チトクロームオキシダーゼ]]活性の組織染色<ref><pubmed> 223730 </pubmed></ref>など様々な方法で眼優位コラムを可視化することができる('''図2''')。


 眼優位コラムの形態学的な基盤は、それぞれの眼の入力を伝える外側膝状体からの入力軸索が、V1内で分離していることである。その構造は[[経ニューロン標識法|経ニューロン標識 (transneuronal labeling)法]]により観察することができる。一方の眼球に放射性[[wj:アミノ酸|アミノ酸]]([<sup>3</sup>H]-プロリンなど)や[[小麦胚細胞凝集素]] ([[wheat germ agglutinin]])などをトレーサーとして注入すると、網膜[[神経節細胞]]に取り込まれたトレーサーが外側膝状体ニューロンに受け渡され、V1に投射する軸索を標識する。これにより,標識した眼からの情報が皮質のどこに投射するかを調べることができる。この方法で一方の眼の投射領域を可視化すると、霊長類では、図2のチトクロームオキシダーゼ染色の結果と似たストライプ状の構造が見られる。
 眼優位コラムの形態学的な基盤は、それぞれの眼の入力を伝える外側膝状体からの入力軸索が、V1内で分離していることである。その構造は[[経ニューロン標識法|経ニューロン標識 (transneuronal labeling)法]]により観察することができる。一方の眼球に放射性[[wj:アミノ酸|アミノ酸]]([<sup>3</sup>H]-プロリンなど)や[[小麦胚細胞凝集素]] ([[wheat germ agglutinin]])などをトレーサーとして注入すると、網膜[[神経節細胞]]に取り込まれたトレーサーが外側膝状体ニューロンに受け渡され、V1に投射する軸索を標識する。これにより,標識した眼からの情報が皮質のどこに投射するかを調べることができる。この方法で一方の眼の投射領域を可視化すると、霊長類では、'''図2'''のチトクロームオキシダーゼ染色の結果と似たストライプ状の構造が見られる。


 眼優位コラムの形態やサイズは[[動物]]種によって異なる。[[ヒト]]と[[マカクザル]]は共にストライプ状の眼優位コラムを持つが、マカクザルでは幅が400-700μmであるのに対して<ref><pubmed> 8929431 </pubmed></ref>、ヒトでは700-1000μmとやや広い<ref name="humanOcDom"><pubmed> 17898211 </pubmed></ref>。[[ネコ]]ではストライプではなくパッチ状の形態を示し、幅は数百μmである<ref><pubmed> 12110955 </pubmed></ref>。げっ歯類ではV1の中で様々な眼優位性のニューロンが混在しており、眼優位コラムのような構造は確認されていない。また、眼優位コラムの形態やサイズは同じ種の動物でもかなり違いがあり、たとえば[[リスザル]]では明瞭なコラム構造が見られる個体とそうでない個体、さらに同じ個体の視覚野内でコラム構造が見られる部分とそうでない部分が混在している例が報告されている<ref><pubmed> 12536211 </pubmed></ref>。
 眼優位コラムの形態やサイズは[[動物]]種によって異なる。[[ヒト]]と[[マカクザル]]は共にストライプ状の眼優位コラムを持つが、マカクザルでは幅が400-700μmであるのに対して<ref><pubmed> 8929431 </pubmed></ref>、ヒトでは700-1000μmとやや広い<ref name="humanOcDom"><pubmed> 17898211 </pubmed></ref>。[[ネコ]]ではストライプではなくパッチ状の形態を示し、幅は数百μmである<ref><pubmed> 12110955 </pubmed></ref>。げっ歯類ではV1の中で様々な眼優位性のニューロンが混在しており、眼優位コラムのような構造は確認されていない。また、眼優位コラムの形態やサイズは同じ種の動物でもかなり違いがあり、たとえば[[リスザル]]では明瞭なコラム構造が見られる個体とそうでない個体、さらに同じ個体の視覚野内でコラム構造が見られる部分とそうでない部分が混在している例が報告されている<ref><pubmed> 12536211 </pubmed></ref>。

案内メニュー