16,040
回編集
細 (→特徴検出器) |
細編集の要約なし |
||
1行目: | 1行目: | ||
、米原圭祐 | |||
国立遺伝学研究所 遺伝形質研究系 | |||
<div align="right"> | |||
[https://researchmap.jp/aki2022nig 松本彰弘]、[https://researchmap.jp/read0125092 米原 圭祐]</font><br> | |||
''国立遺伝学研究所 遺伝形質研究系''<br> | |||
DOI:<selfdoi /> 原稿受付日:2023年9月27日 原稿完成日:2023年10月6日<br> | |||
担当編集委員:[https://researchmap.jp/masahikowatanabeo 渡辺 雅彦] (北海道大学大学院医学研究院 解剖学分野 解剖発生学教室)<br> | |||
</div> | |||
{{box|text= 外界の光は、眼球の光学系を介し網膜に結像する。網膜は視覚系の感覚器官であり、多種多様な神経細胞が精緻な神経回路を形成する神経組織である。網膜の機能的な真価は、カメラフィルムのように単に光の配列情報を撮像・保持するのではなく、情報を環境あるいは生態学的なニッチに応じて処理、圧縮する演算にある。網膜は、情報を脳へと”垂れ流し”にするのではなく、顕著性や重要性に応じてフィルタリングしながら、それらを適切な脳部位へと振り分けている。}} | {{box|text= 外界の光は、眼球の光学系を介し網膜に結像する。網膜は視覚系の感覚器官であり、多種多様な神経細胞が精緻な神経回路を形成する神経組織である。網膜の機能的な真価は、カメラフィルムのように単に光の配列情報を撮像・保持するのではなく、情報を環境あるいは生態学的なニッチに応じて処理、圧縮する演算にある。網膜は、情報を脳へと”垂れ流し”にするのではなく、顕著性や重要性に応じてフィルタリングしながら、それらを適切な脳部位へと振り分けている。}} | ||
117行目: | 123行目: | ||
== 網膜神経回路による情報表現 == | == 網膜神経回路による情報表現 == | ||
=== 中心-周辺拮抗型受容野 === | === 中心-周辺拮抗型受容野 === | ||
双極細胞、アマクリン細胞、神経節細胞の受容野は同心円構造をとり、受容野中心と周辺とで応答性が拮抗する('''図5A''')。例えば、オン型双極細胞は、受容野中心へのオン刺激に脱分極し、その周囲に環状のオフ刺激を呈示すると過分極する。 | |||
中心-周辺拮抗型受容野の形成機構は、周辺からの側方向的なシナプス伝達におけるゲイン制御(側抑制)を基本とする。例えばオン型双極細胞では、受容野周辺にオフ刺激を呈示すると視細胞が脱分極し、直下の水平細胞が興奮する。活性化した水平細胞は側方向的に受容野中心の視細胞を抑制し、過分極させる。結果としてグルタミン酸放出が止まり、オン型双極細胞はmGluR6受容体を介して脱分極を起こす。 | 中心-周辺拮抗型受容野の形成機構は、周辺からの側方向的なシナプス伝達におけるゲイン制御(側抑制)を基本とする。例えばオン型双極細胞では、受容野周辺にオフ刺激を呈示すると視細胞が脱分極し、直下の水平細胞が興奮する。活性化した水平細胞は側方向的に受容野中心の視細胞を抑制し、過分極させる。結果としてグルタミン酸放出が止まり、オン型双極細胞はmGluR6受容体を介して脱分極を起こす。 | ||
拮抗型受容野は、信号強度の増強に寄与すると考えられる。拮抗型受容野が最もよく応答するパターンは、受容野中心と周辺がともに興奮性に働く明暗エッジである('''図5B''')。一方で、受容野全面を覆う低コントラストの像では周辺抑制のために応答が弱くなる。つまり、拮抗型受容野の機能は、定常な特徴をノイズとして無視し、「輝度の変化分」を検出して増強することにある。 | |||
=== 図と地の分離 === | === 図と地の分離 === | ||
脳が処理する網膜像は二次元像であるため、立体像としての視知覚を構成するためには、背景(地)と物体(図)を分離して認識する必要がある。網膜では、前述したオブジェクトモーション細胞が、背景から局所運動成分を検出することで図と地の分離に貢献することが示唆されている<ref name=Olveczky2003><pubmed>12754524</pubmed></ref> | 脳が処理する網膜像は二次元像であるため、立体像としての視知覚を構成するためには、背景(地)と物体(図)を分離して認識する必要がある。網膜では、前述したオブジェクトモーション細胞が、背景から局所運動成分を検出することで図と地の分離に貢献することが示唆されている<ref name=Olveczky2003><pubmed>12754524</pubmed></ref> | ||
138行目: | 145行目: | ||
一方で、双極細胞からのグルタミン酸入力も方向選択性形成に寄与する。古典的な運動検出器では、速い(一過性型)入力と遅い(持続型)入力素子を仮定し、視覚運動が遅い素子から速い素子の側へと呈示されると、入力遅延が相殺され加算が生じる('''図6C、D''')。スターバースト細胞は、細胞体の近位に持続型、遠位に一過性型の双極細胞から入力を受けるため<ref name=Kim2014><pubmed>24805243</pubmed></ref>[52]、遠心性方向への動きで加算が生じる<ref name=Srivastava2022><pubmed>36346388</pubmed></ref> | 一方で、双極細胞からのグルタミン酸入力も方向選択性形成に寄与する。古典的な運動検出器では、速い(一過性型)入力と遅い(持続型)入力素子を仮定し、視覚運動が遅い素子から速い素子の側へと呈示されると、入力遅延が相殺され加算が生じる('''図6C、D''')。スターバースト細胞は、細胞体の近位に持続型、遠位に一過性型の双極細胞から入力を受けるため<ref name=Kim2014><pubmed>24805243</pubmed></ref>[52]、遠心性方向への動きで加算が生じる<ref name=Srivastava2022><pubmed>36346388</pubmed></ref> | ||
[53]。この加算過程は動きの速度と入力素子間の距離が対応する必要があるため、速度への調節性が伴う。オン型方向選択性細胞は、同様の加算機構をもつが、双極細胞の空間的な配置が遅い動きに対応している<ref name=Matsumoto2019><pubmed>31564498</pubmed></ref>[54]。また、オンオフ型方向選択性細胞については、接続する双極細胞の特定のタイプ(T7オン型、T2オフ型)からのグルタミン酸放出に方向選択性が存在し、かつその選好方向が方向選択性細胞と一致するため、調節性が増強される<ref name=Matsumoto2021><pubmed>34390651</pubmed></ref>[55]。 | [53]。この加算過程は動きの速度と入力素子間の距離が対応する必要があるため、速度への調節性が伴う。オン型方向選択性細胞は、同様の加算機構をもつが、双極細胞の空間的な配置が遅い動きに対応している<ref name=Matsumoto2019><pubmed>31564498</pubmed></ref>[54]。また、オンオフ型方向選択性細胞については、接続する双極細胞の特定のタイプ(T7オン型、T2オフ型)からのグルタミン酸放出に方向選択性が存在し、かつその選好方向が方向選択性細胞と一致するため、調節性が増強される<ref name=Matsumoto2021><pubmed>34390651</pubmed></ref>[55]。 | ||
== 関連項目 == | == 関連項目 == |