16,040
回編集
細 (→脊椎動物) |
細編集の要約なし |
||
18行目: | 18行目: | ||
== 脊椎動物 == | == 脊椎動物 == | ||
=== 発見、歴史的経緯など === | === 発見、歴史的経緯など === | ||
我々が匂いを感知する仕組みについては、古くから複数の学説が唱えられていたが、そのうちのひとつが、[[wj:ジョン・アムーア|Amoore]]による[[立体化学説]]であった。匂い分子の化学構造、形とサイズが[[鼻腔上皮]]の受容部位の構造に適合すると匂いが感知されるとの説である<ref name=Amoore1963><pubmed>14012641</pubmed></ref>。この学説で概念に過ぎなかった”[[受容体]]”の存在は、1991年、[[wj:リンダ・バック|Buck]]と[[wj:リチャード・アクセル|Axel]]による、[[ラット]] | 我々が匂いを感知する仕組みについては、古くから複数の学説が唱えられていたが、そのうちのひとつが、[[wj:ジョン・アムーア|Amoore]]による[[立体化学説]]であった。匂い分子の化学構造、形とサイズが[[鼻腔上皮]]の受容部位の構造に適合すると匂いが感知されるとの説である<ref name=Amoore1963><pubmed>14012641</pubmed></ref>。この学説で概念に過ぎなかった”[[受容体]]”の存在は、1991年、[[wj:リンダ・バック|Buck]]と[[wj:リチャード・アクセル|Axel]]による、[[ラット]]嗅覚受容体遺伝子ファミリーの歴史的な発見により明らかとなった<ref name=Buck1991><pubmed>1840504</pubmed></ref>。 | ||
その後、嗅覚受容体遺伝子によりコードされるタンパク質が匂い物質に応答し、[[嗅神経細胞]]の活性化をもたらすことが実証された<ref name=Touhara1999><pubmed>10097159</pubmed></ref><ref name=Zhao1998><pubmed>9422698</pubmed></ref>。嗅覚受容体遺伝子は脊椎動物全般において、最大の遺伝子ファミリーとして存在し、多重遺伝子ファミリーを形成するが、その数は生物種により大きく異なり、例えば[[マウス]]では約1100、[[ヒト]]では約400存在する<ref name=Niimura2014><pubmed>25053675</pubmed></ref>。嗅覚受容体遺伝子ファミリーは他の遺伝子ファミリーに比べると[[偽遺伝子]]の割合が高く、進化の過程での重複、欠失が多いことも特徴である。さらに、ヒト個人間においても数多くの[[遺伝子多型]]が存在し、特定の匂いへの知覚感度に影響する例も報告されている <ref name=Markt2022><pubmed> 35113854 </pubmed></ref><ref name=Niimura2020>'''Niimura Y, Ihara S, Touhara K (2020).'''<br>3.25 - Mammalian Olfactory and Vomeronasal Receptor Families. In The Senses: A Comprehensive Reference (Second Edition). Edited by Fritzsch B: Elsevier; pp 516-535.</ref><ref name=Sato-Akuhara2023><pubmed> 36625229 </pubmed></ref><ref name=Trimmer2019><pubmed> 31040214 </pubmed></ref>。 | その後、嗅覚受容体遺伝子によりコードされるタンパク質が匂い物質に応答し、[[嗅神経細胞]]の活性化をもたらすことが実証された<ref name=Touhara1999><pubmed>10097159</pubmed></ref><ref name=Zhao1998><pubmed>9422698</pubmed></ref>。嗅覚受容体遺伝子は脊椎動物全般において、最大の遺伝子ファミリーとして存在し、多重遺伝子ファミリーを形成するが、その数は生物種により大きく異なり、例えば[[マウス]]では約1100、[[ヒト]]では約400存在する<ref name=Niimura2014><pubmed>25053675</pubmed></ref>。嗅覚受容体遺伝子ファミリーは他の遺伝子ファミリーに比べると[[偽遺伝子]]の割合が高く、進化の過程での重複、欠失が多いことも特徴である。さらに、ヒト個人間においても数多くの[[遺伝子多型]]が存在し、特定の匂いへの知覚感度に影響する例も報告されている <ref name=Markt2022><pubmed> 35113854 </pubmed></ref><ref name=Niimura2020>'''Niimura Y, Ihara S, Touhara K (2020).'''<br>3.25 - Mammalian Olfactory and Vomeronasal Receptor Families. In The Senses: A Comprehensive Reference (Second Edition). Edited by Fritzsch B: Elsevier; pp 516-535.</ref><ref name=Sato-Akuhara2023><pubmed> 36625229 </pubmed></ref><ref name=Trimmer2019><pubmed> 31040214 </pubmed></ref>。 | ||
71行目: | 71行目: | ||
上記嗅覚受容体, イオノトロピック型嗅覚受容体ファミリータンパク質以外に、[[味覚受容体#昆虫の味覚受容体|味覚受容体]]([[味覚受容体#昆虫の味覚受容体|gustatory receptor]], [[味覚受容体#昆虫の味覚受容体|GR]])ファミリータンパク質のメンバー、[[Gr21a]]、[[Gr63a]]が嗅神経細胞に発現し、CO<sub>2</sub>を匂い物質として受容することが明らかになっている<ref name=Jones2007><pubmed>17167414</pubmed></ref><ref name=Kwon2007><pubmed>17360684</pubmed></ref>('''図2''')。 | 上記嗅覚受容体, イオノトロピック型嗅覚受容体ファミリータンパク質以外に、[[味覚受容体#昆虫の味覚受容体|味覚受容体]]([[味覚受容体#昆虫の味覚受容体|gustatory receptor]], [[味覚受容体#昆虫の味覚受容体|GR]])ファミリータンパク質のメンバー、[[Gr21a]]、[[Gr63a]]が嗅神経細胞に発現し、CO<sub>2</sub>を匂い物質として受容することが明らかになっている<ref name=Jones2007><pubmed>17167414</pubmed></ref><ref name=Kwon2007><pubmed>17360684</pubmed></ref>('''図2''')。 | ||
[[ファイル:Touhara Olfactory Receptor Fig2.png|サムネイル|350px|'''図2. 昆虫の嗅覚受容体''']] | [[ファイル:Touhara Olfactory Receptor Fig2.png|サムネイル|350px|'''図2. 昆虫の嗅覚受容体'''<br>OR: 昆虫嗅覚受容体、Orco: olfactory receptor co-receptor、IR: イオノトロピック型嗅覚受容体、Gr: 味覚受容体]] | ||
=== 構造 === | === 構造 === | ||
==== 昆虫嗅覚受容体 ==== | ==== 昆虫嗅覚受容体 ==== | ||
脊椎動物嗅覚受容体と同様、7回膜貫通構造を有するが、その膜トポロジーは逆であり、N末端が細胞質に、C末端が細胞外領域に位置する<ref name=Benton2006><pubmed>16402857</pubmed></ref><ref name=Hopf2015><pubmed>25584517</pubmed></ref>('''図2''' | 脊椎動物嗅覚受容体と同様、7回膜貫通構造を有するが、その膜トポロジーは逆であり、N末端が細胞質に、C末端が細胞外領域に位置する<ref name=Benton2006><pubmed>16402857</pubmed></ref><ref name=Hopf2015><pubmed>25584517</pubmed></ref>('''図2''')。脊椎動物嗅覚受容体と異なり、Gタンパク質共役型受容体との相同性はない。全般的に種間での配列保存性は低いが、唯一、種を超えて保存性の高い共通の嗅覚受容体が存在し、[[olfactory receptor co-receptor]] ([[Orco]])と呼ばれる。Orcoは、リガンド選択性を有する嗅覚受容体とヘテロ多量体を形成して機能すると考えられている。 | ||
近年、[[クライオ電子顕微鏡]]解析により、[[イチジク]]寄生バチの一種、''[[Apocrypta bakeri]]''のOrco、および、[[イシノミ]]類の昆虫''[[Machilis hrabei]]''の嗅覚受容体, MhOR5について、立体構造が明らかになった<ref name=Butterwick2018><pubmed>30111839</pubmed></ref><ref name=DelMármol2021><pubmed>34349260</pubmed></ref>。Orcoは単独ではホモ4量体構造を形成することが示され、チャネルの開閉制御に重要な領域が明らかになった<ref name=Butterwick2018><pubmed>30111839</pubmed></ref>。MhOR5については、2種類の匂いリガンドとの共構造からリガンド結合によるチャネルの構造変化が示されるとともに、単一の受容体が多様な構造のリガンドを認識し得る構造基盤として、リガンド受容が複数の疎水的相互作用に基づくことも示された<ref name=DelMármol2021><pubmed>34349260</pubmed></ref>。 | |||
==== イオノトロピック型嗅覚受容体 ==== | ==== イオノトロピック型嗅覚受容体 ==== | ||
[[イオンチャネル型グルタミン酸受容体]] (iGluR)と相同性が高く、3回膜貫通構造を持つ。イオノトロピック型受容体においてもリガンド選択性を有するIR- | [[イオンチャネル型グルタミン酸受容体]] (iGluR)と相同性が高く、3回膜貫通構造を持つ。イオノトロピック型受容体においてもリガンド選択性を有するIR-Xと、Orco同様、リガンドに関わらず共通な[[IR-coY]](ショウジョウバエでは、[[IR8a]], [[IR25a]], [[IR76b]])が存在する。チャネルとしての機能ユニットは、2つのIR-Xと2つのIR-coYから構成されるヘテロ4量体と考えられている<ref name=Abuin2011><pubmed>21220098</pubmed></ref><ref name=Abuin2019><pubmed> 30995910 </pubmed></ref>。IR-coYはアミノ末端ドメイン(amino-terminal domain, ATD), リガンド結合ドメイン(ligand-binding domain, LBD)、イオンチャネルドメインから構成され、iGluRと高度な保存性を有する一方、IR-Xはアミノ末端ドメインを持たず、iGluRとの相同性が低く、特にリガンド結合ドメインの保存度が低い。イオノトロピック型受容体の立体構造は明らかになっていない。 | ||
==== 味覚受容体 ==== | ==== 味覚受容体 ==== | ||
嗅覚受容体と同様、7回膜貫通構造を持ち、N末端が細胞質側、C末端が細胞外側のトポロジーを示す。[[Gr21a]], [[Gr63a]]そのものの構造は示されていないが、他の味覚受容体ファミリーメンバーである、[[カイコ]][[BmGr9]]のホモロジーモデリングと変異体解析において、味覚受容体も嗅覚受容体と同様のチャネル構造をもつことが示唆されている<ref name=Morinaga2022><pubmed>36209821</pubmed></ref>。 | |||
=== 発現部位 === | === 発現部位 === | ||
97行目: | 97行目: | ||
==== イオノトロピック型嗅覚受容体 ==== | ==== イオノトロピック型嗅覚受容体 ==== | ||
匂い物質をリガンドとするリガンド作動性イオンチャネルとして機能し、Na<sup>+</sup>, K<sup>+</sup>, Ca<sup>2+</sup>を透過させる非選択性陽イオンチャネルを構成する<ref name=Abuin2011><pubmed>21220098</pubmed></ref>。匂い物質のうち、主に[[酸]]、[[アミン]]、[[アルデヒド]]を受容する点で、[[エステル]]や[[アルコール]]を中心に受容する嗅覚受容体と相補的なはたらきをすると考えられている<ref name=Silbering2011><pubmed>21940430</pubmed></ref>。嗅覚受容体と同様、リガンド認識は「多対多」が基本であるが、選択的な認識が特定の行動に結びつく場合もあり、ショウジョウバエ[[Ir92a]]によるアミンや[[アンモニア]]の受容が誘引行動に、[[Ir84a]]による食物由来の匂いの受容が雄のショウジョウバエの[[交尾行動]]促進に繋がる報告例がある<ref name=Grosjean2011><pubmed>21964331</pubmed></ref><ref name=Min2013><pubmed>23509267</pubmed></ref> | 匂い物質をリガンドとするリガンド作動性イオンチャネルとして機能し、Na<sup>+</sup>, K<sup>+</sup>, Ca<sup>2+</sup>を透過させる非選択性陽イオンチャネルを構成する<ref name=Abuin2011><pubmed>21220098</pubmed></ref>。匂い物質のうち、主に[[酸]]、[[アミン]]、[[アルデヒド]]を受容する点で、[[エステル]]や[[アルコール]]を中心に受容する嗅覚受容体と相補的なはたらきをすると考えられている<ref name=Silbering2011><pubmed>21940430</pubmed></ref>。嗅覚受容体と同様、リガンド認識は「多対多」が基本であるが、選択的な認識が特定の行動に結びつく場合もあり、ショウジョウバエ[[Ir92a]]によるアミンや[[アンモニア]]の受容が誘引行動に、[[Ir84a]]による食物由来の匂いの受容が雄のショウジョウバエの[[交尾行動]]促進に繋がる報告例がある<ref name=Grosjean2011><pubmed>21964331</pubmed></ref><ref name=Min2013><pubmed>23509267</pubmed></ref>。イオノトロピック型嗅覚受容体発現神経細胞は、昆虫嗅覚受容体発現神経細胞に比べ、活性化に、より高濃度のリガンドあるいは、長時間のリガンド刺激が必要であり、[[順応]]がおきにくい<ref name=Getahun2012><pubmed>23162431</pubmed></ref>。 | ||
== 関連項目 == | == 関連項目 == |