「フォリスタチン」の版間の差分

編集の要約なし
編集の要約なし
10行目: 10行目:


[[ファイル:Tsuchida Follistatin Fig1.png|サムネイル|'''図1. フォリスタチンとFSTL3(FLRG)''']]
[[ファイル:Tsuchida Follistatin Fig1.png|サムネイル|'''図1. フォリスタチンとFSTL3(FLRG)''']]
[[ファイル:Tsuchida Follistatin Fig3.png|サムネイル|'''図3A. アクチビンと受容体の結合の模式図<br>B. フォリスタチンによるアクチビンのシグナル伝達の阻害の模式図'''<br>中央がアクチビン(赤)
]]
== 構造 ==
== 構造 ==
 フォリスタチン遺伝子はヒトを含めて種間でよく保存されており、6個のエクソンで構成されている。分子内にシステインに富んだ3個のフォリスタチンドメイン (FSD)を持つ糖付加ポリペプチドをコードする。6番目のエクソンのスプライシングの違いにより、FS315とFS288の2つのバリアントが産生される。さらに分解産物であるFS303も生体内に確認されている('''図1''')。FS288は細胞との結合性が高く、アクチビン結合能と阻害活性がFS315より強い <ref name=Shimasaki1988><pubmed>3380788</pubmed></ref> <ref name=Hashimoto1997><pubmed>9153241</pubmed></ref>。
 フォリスタチン遺伝子はヒトを含めて種間でよく保存されており、6個のエクソンで構成されている。分子内にシステインに富んだ3個のフォリスタチンドメイン (FSD)を持つ糖付加ポリペプチドをコードする。6番目のエクソンのスプライシングの違いにより、FS315とFS288の2つのバリアントが産生される。さらに分解産物であるFS303も生体内に確認されている('''図1''')。FS288は細胞との結合性が高く、アクチビン結合能と阻害活性がFS315より強い <ref name=Shimasaki1988><pubmed>3380788</pubmed></ref> <ref name=Hashimoto1997><pubmed>9153241</pubmed></ref>。
17行目: 19行目:
フォリスタチンには、N末端領域(FSN)と3つのFSドメイン(FSD1, FSD2, FSD3)が存在する。各FSドメインは10個のシステインを含んでおり、Kazal型のプロテアーゼインヒビターと構造上の類似性が見られるが、その活性は検出されない。アクチビンとの結合と阻害活性には全体の分子構造が重要であるが、1、2番目のFSドメイン(FSD1, FSD2)が特に重要である。
フォリスタチンには、N末端領域(FSN)と3つのFSドメイン(FSD1, FSD2, FSD3)が存在する。各FSドメインは10個のシステインを含んでおり、Kazal型のプロテアーゼインヒビターと構造上の類似性が見られるが、その活性は検出されない。アクチビンとの結合と阻害活性には全体の分子構造が重要であるが、1、2番目のFSドメイン(FSD1, FSD2)が特に重要である。


 アクチビン・フォリスタチンは1:2のモル比率で結合する。アクチビンの二量体に2つのフォリスタチン分子が囲い込むように結合する(図2、3)。アクチビンのフォリスタチンへの親和性はアクチビン受容体よりも強い。FSD1とFSD2でアクチビンのII型受容体への結合領域をふさぎ込む形をとる。FSNドメインは、主にI型受容体への結合領域をカバーしている <ref name=Greenwald2004><pubmed>15304227</pubmed></ref>。FSNドメインは、2分子目のフォリスタチンのFSD3と相互作用する<ref name=Cash2012><pubmed>22052913</pubmed></ref>(図3)。こういった機構によって、アクチビンはフォリスタチンに完全に包み込まれ、受容体に結合できずシグナル伝達は遮断された状態になる <ref name=Thompson2005><pubmed>16198295</pubmed></ref> <ref name=Harrington2006><pubmed>16482217</pubmed></ref> <ref name=Lerch2007><pubmed>17409095</pubmed></ref>。3番目のカルボキシル側のFSD3を欠損させてもアクチビン結合は保たれているが、1:1の結合になる <ref name=Cash2012><pubmed>22052913</pubmed></ref>。FSNドメインを保持しつつFSD1を連結させた人為的変異体は、アクチビンとの結合は欠くが、マイオスタチンとの結合と阻害活性は保たれており筋肉量を増加させる作用を持つ <ref name=Nakatani2011><pubmed>21205933</pubmed></ref><ref name=Nakatani2008><pubmed>17893249</pubmed></ref>{Cash, 2012 #162}。
 アクチビン・フォリスタチンは1:2のモル比率で結合する。アクチビンの二量体に2つのフォリスタチン分子が囲い込むように結合する('''図2、3''')。アクチビンのフォリスタチンへの親和性はアクチビン受容体よりも強い。FSD1とFSD2でアクチビンのII型受容体への結合領域をふさぎ込む形をとる。FSNドメインは、主にI型受容体への結合領域をカバーしている <ref name=Greenwald2004><pubmed>15304227</pubmed></ref>。FSNドメインは、2分子目のフォリスタチンのFSD3と相互作用する<ref name=Cash2012><pubmed>22052913</pubmed></ref>(図3)。こういった機構によって、アクチビンはフォリスタチンに完全に包み込まれ、受容体に結合できずシグナル伝達は遮断された状態になる <ref name=Thompson2005><pubmed>16198295</pubmed></ref> <ref name=Harrington2006><pubmed>16482217</pubmed></ref> <ref name=Lerch2007><pubmed>17409095</pubmed></ref>。3番目のカルボキシル側のFSD3を欠損させてもアクチビン結合は保たれているが、1:1の結合になる <ref name=Cash2012><pubmed>22052913</pubmed></ref>。FSNドメインを保持しつつFSD1を連結させた人為的変異体は、アクチビンとの結合は欠くが、マイオスタチンとの結合と阻害活性は保たれており筋肉量を増加させる作用を持つ <ref name=Nakatani2011><pubmed>21205933</pubmed></ref><ref name=Nakatani2008><pubmed>17893249</pubmed></ref>{Cash, 2012 #162}。


== サブファミリー ==
== サブファミリー ==
35行目: 37行目:
フォリスタチンのmRNAとタンパク質は、マウス、ラット、ヒトの多くの組織で発現が見られるが、卵巣、下垂体、腎臓での発現が高い。脳組織、神経系での内在性の発現は少ない。FSTN3(FLRG)のmRNAとタンパク質は、胎盤、骨髄、精巣、腎臓,骨格筋、肺での発現が高い。フォリスタチンは、アクチビン以外にGDF11を阻害する。GDF11は、嗅上皮 における神経新生に関与している。アンタゴニストであるフォリスタチンを欠損させたマウスは、神経新生の劇的な減少を示す <ref name=Wu2003><pubmed>12546816</pubmed></ref>。
フォリスタチンのmRNAとタンパク質は、マウス、ラット、ヒトの多くの組織で発現が見られるが、卵巣、下垂体、腎臓での発現が高い。脳組織、神経系での内在性の発現は少ない。FSTN3(FLRG)のmRNAとタンパク質は、胎盤、骨髄、精巣、腎臓,骨格筋、肺での発現が高い。フォリスタチンは、アクチビン以外にGDF11を阻害する。GDF11は、嗅上皮 における神経新生に関与している。アンタゴニストであるフォリスタチンを欠損させたマウスは、神経新生の劇的な減少を示す <ref name=Wu2003><pubmed>12546816</pubmed></ref>。


[[ファイル:Tsuchida Follistatin Fig4.png|サムネイル|図4. アクチビンのシグナル伝達の概要]]
[[ファイル:Tsuchida Follistatin Fig4.png|サムネイル|'''図4. アクチビンのシグナル伝達の概要''']]
== 機能 ==
== 機能 ==
 フォリスタチンは細胞外でアクチビンA, B, ABと高親和性で結合しその作用を抑制する(図4)。このことからアクチビンの作用を研究するための阻害分子として用いられることが多く有用である。上述のように、フォリスタチンは、アクチビンとモル比2:1で高親和性で結合し強く阻害する。アクチビンとの親和性と阻害活性は相関する。FS288の場合は,ヘパラン硫酸を介して細胞表層のプロテオグリカンに親和性があり、結合したアクチビンを細胞内にエンドサイトーシスの機構で取り込み分解する作用を有する<ref name=Hashimoto1997><pubmed>9153241</pubmed></ref>。FS315にはその作用はない。
 フォリスタチンは細胞外でアクチビンA, B, ABと高親和性で結合しその作用を抑制する(図4)。このことからアクチビンの作用を研究するための阻害分子として用いられることが多く有用である。上述のように、フォリスタチンは、アクチビンとモル比2:1で高親和性で結合し強く阻害する。アクチビンとの親和性と阻害活性は相関する。FS288の場合は,ヘパラン硫酸を介して細胞表層のプロテオグリカンに親和性があり、結合したアクチビンを細胞内にエンドサイトーシスの機構で取り込み分解する作用を有する<ref name=Hashimoto1997><pubmed>9153241</pubmed></ref>。FS315にはその作用はない。