「膵臓転写因子1A」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
19行目: 19行目:
 一方、発生期視床下部においては、性分化に関与するキスペプチンニューロンの発生に細胞非自律的に必要であることが示され、脳の性分化能の獲得に重要であることが示唆されている<ref name=Fujiyama2018><pubmed>29719267</pubmed></ref>[Fujiyama et al., Cell Rep 201840]。
 一方、発生期視床下部においては、性分化に関与するキスペプチンニューロンの発生に細胞非自律的に必要であることが示され、脳の性分化能の獲得に重要であることが示唆されている<ref name=Fujiyama2018><pubmed>29719267</pubmed></ref>[Fujiyama et al., Cell Rep 201840]。


このように、Ptf1a遺伝子は膵前駆細胞の運命決定だけでなく、特定の脳領域における神経細胞サブタイプの運命決定において極めて中心的な役割を果たすと考えられている。また、PTF1Aの過剰発現により、無脊椎動物であるホヤの幼生においてドーパミン神経への分化を誘導促進する<ref name=Horie2018><pubmed>29500243</pubmed></ref>[Horie et al., Genes and Dev 201841]。さらに、マウス大脳皮質での異所性発現では、抑制性ニューロンの特性(遺伝子発現、細胞形態、移動様式)を付与することも示されている<ref name=Hoshino2005><pubmed>16157274</pubmed></ref><ref name=Russ2015><pubmed>25926450</pubmed></ref>[Hoshino 200520; Russ et al., JN 201542]。
 このように、Ptf1a遺伝子は膵前駆細胞の運命決定だけでなく、特定の脳領域における神経細胞サブタイプの運命決定において極めて中心的な役割を果たすと考えられている。また、PTF1Aの過剰発現により、無脊椎動物であるホヤの幼生においてドーパミン神経への分化を誘導促進する<ref name=Horie2018><pubmed>29500243</pubmed></ref>[Horie et al., Genes and Dev 201841]。さらに、マウス大脳皮質での異所性発現では、抑制性ニューロンの特性(遺伝子発現、細胞形態、移動様式)を付与することも示されている<ref name=Hoshino2005><pubmed>16157274</pubmed></ref><ref name=Russ2015><pubmed>25926450</pubmed></ref>[Hoshino 200520; Russ et al., JN 201542]。


== 構造 ==
== 構造 ==
 ヒトPTF1Aタンパク質は328アミノ酸から成り、塩基性ヘリックス・ループ・ヘリックス(basic helix-loop-helix)型DNA結合ドメインを有するClass II bHLH因子群に属する(図1および2)。主に核内で転写因子として機能する。
 ヒトPTF1Aタンパク質は328アミノ酸から成り、塩基性ヘリックス・ループ・ヘリックス(basic helix-loop-helix)型DNA結合ドメインを有するClass II bHLH因子群に属する('''図1'''および'''2''')。主に核内で転写因子として機能する。PTF1Aのサブファミリーに属する因子はこれまで同定されていない。


*図1 ヒトPTF1A(Q7RTS3)アミノ酸配列の模式図
*図1 ヒトPTF1A(Q7RTS3)アミノ酸配列の模式図
33行目: 33行目:
(https://www.proteinatlas.org/ENSG00000168267-PTF1A)より
(https://www.proteinatlas.org/ENSG00000168267-PTF1A)より
image available from v24.proteinatlas.org
image available from v24.proteinatlas.org
== サブファミリー ==
 PTF1Aのサブファミリーに属する因子はこれまで同定されていない。
== タンパク質間相互作用 ==
== タンパク質間相互作用 ==
=== PTF1複合体形成 ===
=== PTF1複合体形成 ===
49行目: 46行目:
 C末端側リジン残基を介してE3リガーゼのTRIP12によりユビキチン化プロテアソーム分解制御を受けることが知られている<ref name=Hanoun2014><pubmed>24599952</pubmed></ref>[Hanoun et al., JBC 201449]。  またPCAF(P300/CBPコアクチベーターファミリー)によるbHLHドメイン内リジン残基のアセチル化が転写活性に必要であることが報告されている<ref name=Rodolosse2009><pubmed>19346520</pubmed></ref>[Rodolosse et al., 200950]。AKTキナーゼによるセリン残基リン酸化を介した活性制御の可能性があるが、詳細は不明<ref name=Jin2019><pubmed>30808811</pubmed></ref>[Jin and Xiang, 201951]。
 C末端側リジン残基を介してE3リガーゼのTRIP12によりユビキチン化プロテアソーム分解制御を受けることが知られている<ref name=Hanoun2014><pubmed>24599952</pubmed></ref>[Hanoun et al., JBC 201449]。  またPCAF(P300/CBPコアクチベーターファミリー)によるbHLHドメイン内リジン残基のアセチル化が転写活性に必要であることが報告されている<ref name=Rodolosse2009><pubmed>19346520</pubmed></ref>[Rodolosse et al., 200950]。AKTキナーゼによるセリン残基リン酸化を介した活性制御の可能性があるが、詳細は不明<ref name=Jin2019><pubmed>30808811</pubmed></ref>[Jin and Xiang, 201951]。


== 主な下流遺伝子==
== 発現 ==
=== 組織分布・発現時期 ===
 胎生期より主に以下の発生過程の組織で観察される。 
 
'''膵前駆細胞 (Pancreas progenitors)'''<br>
胎生期膵形成初期より発現が開始する。膵外分泌細胞系列、ランゲルハンス島ベータ細胞などの内分泌細胞や導管の前駆細胞に発現する。外分泌細胞における遺伝子発現は成体膵で継続する。膵臓における上流因子として転写因子HHEXがPTF1AおよびNKX6.1の発現を亢進することが示されている<ref name=Ito2023><pubmed>36600673</pubmed></ref>[Ito et al., Sci Rep 202366]。
 
'''小脳原基 (Cerebellar anlage)'''<br>
前方背側部の脳室周囲帯(VZ)にmRNAおよびタンパク質の発現がみられ(ロンボメア1レベル)、GABA作動性ニューロン(プルキンエ細胞、PAX2陽性介在ニューロン、小脳核抑制性ニューロンなど)の前駆細胞に発現する('''図4''')<ref name=Hoshino2005><pubmed>16157274</pubmed></ref>[Hoshino et al., 200520]。一方、菱脳唇(rhombic lip)から産生される小脳興奮性ニューロン(顆粒細胞、小脳核興奮性ニューロンなど)の前駆細胞では他のbHLH因子であるATOH1が発現する<ref name=BenArie1997><pubmed>9177350</pubmed></ref><ref name=Machold2005><pubmed>16157276</pubmed></ref><ref name=Wang2005><pubmed>16157275</pubmed></ref>[Ben-Arie et al., Nature 199729; Machold and Fishell, Neuron 200530; Wang, Neuron 200531]。 
 
'''後方菱脳'''  <br>
背側の神経上皮で発現。背側蝸牛神経核および腹側蝸牛神経核の抑制性ニューロンの前駆細胞(ロンボメア2-5レベル)<ref name=Fujiyama2009><pubmed>19029042</pubmed></ref>[Fujiyama et al., 200937]、下オリーブ核(ION)登上線維ニューロンの前駆細胞などに発現する(ロンボメア6-8レベル)<ref name=Yamada2007><pubmed>17428964</pubmed></ref>[Yamada et al., 200738]。登上線維ニューロンは分裂終了後にPTF1A発現を消失し、神経管の背側から腹側に移動する。 
 
'''脊髄後角'''  <br>
 神経管背側の中間領域(dI4–dI6)における抑制性介在ニューロンの前駆細胞で発現する<ref name=Glasgow2005><pubmed>16176951</pubmed></ref>[Glasgow et al., 200532]。この時、遠位の3' エンハンサー領域でPAX6やSOX3が上流因子として機能することや<ref name=Mona2016><pubmed>27207792</pubmed></ref>[Mona et al., DB 201663]、PTF1複合体によるautoregulation作用を含む発現調節機構が知られている<ref name=Meredith2009><pubmed>19403816</pubmed></ref>[Meredith et al., JN 200964]。
 
'''網膜原基'''  <br>
 網膜形成過程の外神経芽細胞層におけるアマクリン細胞および水平細胞の前駆細胞に発現する<ref name=Fujitani2006><pubmed>16835439</pubmed></ref>[Fujitani et al., 200634]。網膜における上流因子としてFOXN4, RORβ1が知られている<ref name=Liu2013><pubmed>23863971</pubmed></ref>[Liu et al., Nat Commun 201365]。


'''前脳(終脳/間脳)'''  <br>
第三脳室周囲の神経上皮および未成熟ニューロンで発現する。マウスでは主にE10.5以降からE14.5までの視索前野および腹側視床下部の2カ所の神経上皮領域に発現がみられる<ref name=Fujiyama2018><pubmed>29719267</pubmed></ref>[Fujiyama et al., 201840]。
== 機能 ==
==下流遺伝子==
 主な下流遺伝子を'''表1'''に示す。
{| class="wikitable" style="width:100%; text-align:left;"
{| class="wikitable" style="width:100%; text-align:left;"
|+表1. 主な下流遺伝子
! 遺伝子 !! 機能・役割 !! 参考文献
! 遺伝子 !! 機能・役割 !! 参考文献
|-
|-
| '''Prdm13''' ||  
| '''Prdm13''' ||小脳GABA作動性ニューロン、視床下部キスペプチンニューロンの発生(マウス・ヒト) <br>
* 小脳GABA作動性ニューロン、視床下部キスペプチンニューロンの発生(マウス・ヒト)
脊髄体性感覚サーキットにおけるE-Iバランス調整  <br>
* 脊髄体性感覚サーキットにおけるE-Iバランス調整   
網膜アマクリン細胞の発生||<ref name=Hanotel2014><pubmed>25224256</pubmed></ref>   
* 網膜アマクリン細胞の発生 ||  
<ref name=Hanotel2014><pubmed>25224256</pubmed></ref>   
<ref name=Whittaker2021><pubmed>33792217</pubmed></ref>   
<ref name=Whittaker2021><pubmed>33792217</pubmed></ref>   
<ref name=Chang2013><pubmed>24012334</pubmed></ref>   
<ref name=Chang2013><pubmed>24012334</pubmed></ref>   
79行目: 98行目:


== 細胞レベルの機能 ==
== 細胞レベルの機能 ==
=== 側方抑制(lateral inhibition)とNotchシグナル ===
=== 側方抑制(lateral inhibition)とNotchシグナル ===
 マウス膵臓では、転写因子PTF1AとNKX6.1が互いに抑制し合うcross-repressiveな作用により、先端(tip)領域と基部(trunk)領域の境界で細胞分化の運命決定がなされる<ref name=Schaffer2010><pubmed>21145504</pubmed></ref>[Schaffer et al., Developmental Cell 201061]。   
 マウス膵臓では、転写因子PTF1AとNKX6.1が互いに抑制し合うcross-repressiveな作用により、先端(tip)領域と基部(trunk)領域の境界で細胞分化の運命決定がなされる<ref name=Schaffer2010><pubmed>21145504</pubmed></ref>[Schaffer et al., Developmental Cell 201061]。   
87行目: 105行目:
NKX6.1が発現するtrunk領域の細胞では、Notchシグナルと協調して内分泌・導管分化が促進される<ref name=Schaffer2010><pubmed>21145504</pubmed></ref>[Schaffer et al., Developmental Cell 201061]。
NKX6.1が発現するtrunk領域の細胞では、Notchシグナルと協調して内分泌・導管分化が促進される<ref name=Schaffer2010><pubmed>21145504</pubmed></ref>[Schaffer et al., Developmental Cell 201061]。


== 発現 ==
=== 組織分布・発現時期 ===
PTF1Aの発現は胎生期より主に以下の発生過程の組織で観察される。 
'''膵前駆細胞 (Pancreas progenitors)''' 
胎生期膵形成初期より発現が開始する。膵外分泌細胞系列、ランゲルハンス島ベータ細胞などの内分泌細胞や導管の前駆細胞に発現する。外分泌細胞における遺伝子発現は成体膵で継続する。 
'''小脳原基 (Cerebellar anlage)''' 
前方背側部の脳室周囲帯(VZ)にmRNAおよびタンパク質の発現がみられ(ロンボメア1レベル)、GABA作動性ニューロン(プルキンエ細胞、PAX2陽性介在ニューロン、小脳核抑制性ニューロンなど)の前駆細胞に発現する(図4)<ref name=Hoshino2005><pubmed>16157274</pubmed></ref>[Hoshino et al., 200520]。 


一方、菱脳唇(rhombic lip)から産生される小脳興奮性ニューロン(顆粒細胞、小脳核興奮性ニューロンなど)の前駆細胞では他のbHLH因子であるATOH1が発現する<ref name=BenArie1997><pubmed>9177350</pubmed></ref><ref name=Machold2005><pubmed>16157276</pubmed></ref><ref name=Wang2005><pubmed>16157275</pubmed></ref>[Ben-Arie et al., Nature 199729; Machold and Fishell, Neuron 200530; Wang, Neuron 200531]。 
'''後方菱脳''' 
背側の神経上皮で発現。背側蝸牛神経核および腹側蝸牛神経核の抑制性ニューロンの前駆細胞(ロンボメア2-5レベル)<ref name=Fujiyama2009><pubmed>19029042</pubmed></ref>[Fujiyama et al., 200937]、下オリーブ核(ION)登上線維ニューロンの前駆細胞などに発現する(ロンボメア6-8レベル)<ref name=Yamada2007><pubmed>17428964</pubmed></ref>[Yamada et al., 200738]。登上線維ニューロンは分裂終了後にPTF1A発現を消失し、神経管の背側から腹側に移動する。 
'''脊髄後角''' 
神経管背側の中間領域(dI4–dI6)における抑制性介在ニューロンの前駆細胞で発現する<ref name=Glasgow2005><pubmed>16176951</pubmed></ref>[Glasgow et al., 200532]。 
'''網膜原基''' 
網膜形成過程の外神経芽細胞層におけるアマクリン細胞および水平細胞の前駆細胞に発現する<ref name=Fujitani2006><pubmed>16835439</pubmed></ref>[Fujitani et al., 200634]。 
'''前脳(終脳/間脳)''' 
第三脳室周囲の神経上皮および未成熟ニューロンで発現する。マウスでは主にE10.5以降からE14.5までの視索前野および腹側視床下部の2カ所の神経上皮領域に発現がみられる<ref name=Fujiyama2018><pubmed>29719267</pubmed></ref>[Fujiyama et al., 201840]。
=== 自身の発現制御(上流側) ===
==== エンハンサー・上流因子 ====
マウス神経管背側(脊髄)でのPtf1a発現制御において、遠位の3' エンハンサー領域でPAX6やSOX3が上流因子として機能することや<ref name=Mona2016><pubmed>27207792</pubmed></ref>[Mona et al., DB 201663]、PTF1複合体によるautoregulation作用を含む発現調節機構が知られている<ref name=Meredith2009><pubmed>19403816</pubmed></ref>[Meredith et al., JN 200964]。 
網膜における上流因子としてFOXN4, RORβ1が知られている<ref name=Liu2013><pubmed>23863971</pubmed></ref>[Liu et al., Nat Commun 201365]。 
また、膵臓における上流因子として転写因子HHEXがPTF1AおよびNKX6.1の発現を亢進することが示されている<ref name=Ito2023><pubmed>36600673</pubmed></ref>[Ito et al., Sci Rep 202366]。
== 機能 ==
=== 組織・個体レベル===
=== 組織・個体レベル===
PTF1Aは膵臓発達のみならず、中枢神経系における多様なニューロンの運命決定および領域特異的な神経ネットワーク形成に中心的な役割を果たしている。   
PTF1Aは膵臓発達のみならず、中枢神経系における多様なニューロンの運命決定および領域特異的な神経ネットワーク形成に中心的な役割を果たしている。   

ナビゲーション メニュー