113
回編集
Toshikiiwabuchi (トーク | 投稿記録) 細編集の要約なし |
Toshikiiwabuchi (トーク | 投稿記録) 細編集の要約なし |
||
39行目: | 39行目: | ||
上で見てきた単語の視覚認知モデルは,文字列の視覚的形状をもとに語彙情報へ直接アクセスすることを通常のやり方として仮定していた.しかし,私たちは「モクホジ」などの非単語も発音することは可能である.つまり語彙に含まれない文字列であっても,視覚情報を音韻情報に変換する経路は脳内に存在しているのだと考えられる.こうした背景に基づき,Coltheartらは音読過程の二重経路カスケード・モデル(dual-route cascaded model)を提案した.このモデルでは非単語を読むときには語彙情報を介さず,書記素‐音素対応規則(Grapheme-Phoneme correspondence rule)にしたがって文字列を音素に変換するという過程を経る.一方で語彙情報へのアクセスを介して音素に変換するプロセスもあり,例外的な発音をする単語はこの経路のみで処理される. | 上で見てきた単語の視覚認知モデルは,文字列の視覚的形状をもとに語彙情報へ直接アクセスすることを通常のやり方として仮定していた.しかし,私たちは「モクホジ」などの非単語も発音することは可能である.つまり語彙に含まれない文字列であっても,視覚情報を音韻情報に変換する経路は脳内に存在しているのだと考えられる.こうした背景に基づき,Coltheartらは音読過程の二重経路カスケード・モデル(dual-route cascaded model)を提案した.このモデルでは非単語を読むときには語彙情報を介さず,書記素‐音素対応規則(Grapheme-Phoneme correspondence rule)にしたがって文字列を音素に変換するという過程を経る.一方で語彙情報へのアクセスを介して音素に変換するプロセスもあり,例外的な発音をする単語はこの経路のみで処理される. | ||
SeidenbergとMcClellandの並列分散処理モデル(parallel distributed processing | SeidenbergとMcClellandの並列分散処理モデル(parallel distributed processing model)も,非単語や例外的発音の音読を説明することができる.このモデルの最も際立った特徴は,そもそもメンタル・レキシコンの存在を仮定しないという点にある.これまで紹介した他のモデルでは語彙項目を単一のユニットで表象していたが,並列分散処理モデルでは語の意味情報・音韻情報・書字情報が3つのユニット群に分散され,これら3つのユニット群は中間層を介して互いに異なるユニット群と結合している.このモデルは三角形の構造を持つことからトライアングル・モデルと呼ばれることもある.このモデルは綴りと発音などの正しい組み合わせを学習することができるが,その場合も特定の文字や音を表象するような特定の単一ユニットは存在せず,特定の入力に対してユニット群が特定の活性化パターンを示すようになるだけである.二重経路カスケード・モデルとトライアングル・モデルは共に音読過程をある程度うまく説明することができるが,どちらが実際の脳内機構とより合致しているかは今も議論の続いている問題である. | ||
回編集