「ナトリウムチャネル」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
編集の要約なし
41行目: 41行目:
 遅い不活性化については速い不活性化ほど分子機構は明瞭ではない。[[ヒト]]の[[wikipedia:JA:骨格筋|骨格筋]]や[[wikipedia:JA:心筋|心筋]]の興奮性の異常を示すいくつかの遺伝病の研究により、遅い不活性化の異常を引き起こすアミノ酸変異が見つかっている。変異は複数の部分に渡っているため、遅い不活性化の過程には複数のドメインが関与していると考えられる。  
 遅い不活性化については速い不活性化ほど分子機構は明瞭ではない。[[ヒト]]の[[wikipedia:JA:骨格筋|骨格筋]]や[[wikipedia:JA:心筋|心筋]]の興奮性の異常を示すいくつかの遺伝病の研究により、遅い不活性化の異常を引き起こすアミノ酸変異が見つかっている。変異は複数の部分に渡っているため、遅い不活性化の過程には複数のドメインが関与していると考えられる。  


 通常、Navチャネルは不活性化が速いため、一過的にしか内向き電流は流れないが、[[小脳]]の[[プルキンエ細胞]]をはじめ多くの[[神経細胞]]では、長時間にわたり不活性化せずに開き続ける持続的な内向き電流が存在する([[持続性ナトリウム電流]])。また、これに加えて小脳のプルキンエ細胞などでは、不活性化状態ののち再開口が起こりやすく([[Resurgent電流]])(図4参照)、これにより[[スパイク]]の後に[[脱分極]]が引き起こされることが知られている。 β4が細胞内側からのblocking particleとして作用し、resurgent電流の形成に関わるという報告<ref><pubmed>15664175</pubmed></ref>があるが、分子メカニズムについてはまだ分っていないことが多い。&nbsp;[[Image:Resurgent電流.png|thumb|図4. マウスのプルキンエ細胞から記録されたResurgent電流。Raman IM et al.<ref><pubmed>9169512</pubmed></ref> (1997) より転載。]]  
 通常、Navチャネルは不活性化が速いため、一過的にしか内向き電流は流れないが、[[小脳]]の[[プルキンエ細胞]]をはじめ多くの[[神経細胞]]では、長時間にわたり不活性化せずに開き続ける持続的な内向き電流が存在する([[持続性ナトリウム電流]])。また、これに加えて小脳のプルキンエ細胞などでは、不活性化状態ののち再開口が起こりやすく([[Resurgent電流]])(図4参照)、これにより[[スパイク]]の後に[[脱分極]]が引き起こされることが知られている。 β4が細胞内側からのblocking particleとして作用し、resurgent電流の形成に関わるという報告<ref><pubmed>15664175</pubmed></ref>があるが、分子メカニズムについてはまだ分っていないことが多い。 [[Image:Resurgent電流.png|thumb|図4. マウスのプルキンエ細胞から記録されたRurgent 電流。Raman IM et al.(1997)<ref><pubmed>9169512</pubmed></ref>より転載。]]<br>


[[Image:Tree.png|thumb|300px|<b>図5. サブユニットの系統樹</b>]]   
[[Image:Tree.png|thumb|300px|<b>図5. サブユニットの系統樹</b>]]   
79

回編集

案内メニュー