16,039
回編集
細 (→海馬新生ニューロンの特徴) |
細編集の要約なし |
||
1行目: | 1行目: | ||
同義語:ニューロン新生 | 同義語:ニューロン新生 | ||
成体脳においても、[[記憶]]にかかわる[[海馬]]体の[[歯状回]]部位においては、個体の生涯を通じて新しく[[ニューロン]]が生み出されている。海馬新生ニューロンの機能についての研究が進み、記憶形成や[[抗うつ作用]]を担っていることを示すデータが数多く得られてきた(500字程度まで御拡張下さい)。 | |||
== 歴史的背景 | == 歴史的背景== | ||
1960年代から、[[wikipedia:ja:哺乳動物|哺乳動物]]([[マウス]]や[[wikipedia:ja:ラット|ラット]]など)の研究で、成体脳でもニューロンが生み出されていることが報告されていた<ref name="ref2"><pubmed>13512326</pubmed></ref>。しかし、ヒトの脳でニューロンが新生しているとは長らく認知されることがなかった。[[wikipedia:ja:スウェーデン|スウェーデン]]の[[wikipedia:ja:エーテボリ|エーテボリ]]にある[[wikipedia:sv:Sahlgrenska akademin|サールグレンスカ大学病院]]のエリクソンと[[wikipedia:ja:米国|米国]][[wikipedia:ja:ソーク生物学研究所|ソーク生物学研究所]]の[[wikipedia:Fred Gage|ゲージ]]らは、[[wikiepdia:ja:抗がん剤|抗がん剤]]([[wikipedia:Bromodeoxyuridine|ブロモデオキシウリジン]])を服用したがん患者の協力を得て、その患者が死亡した後に、脳組織標本を詳しく調べることにより、大人の脳の中でも、少なくとも、海馬の歯状回で、ニューロンが新生していることを見出した<ref name="ref1"><pubmed>9809557</pubmed></ref>。エリクソンとゲージらの研究に触発され、大型の[[wikipedia:ja:サル|サル]]([[wikipedia:ja:マカクザル|マカクザル]])でも、生体海馬でニューロン新生が起こっていることが立証され、哺乳類の脳において、成体の海馬でニューロン新生が起こっていることが確実に立証された<ref name="ref3"><pubmed>15788705</pubmed></ref><ref name="ref4">'''ケンペルマン, G. & ゲージ, F. H.'''<br>大人でも脳細胞は新生する<br>''日経サイエンス'', 1999年8月号 36-42. </ref>。 | |||
海馬歯状回でのニューロン新生に加え、他の脳部位におけるニューロン新生に関しても、非常に精力的な研究が進められている。動物モデル研究では、[[におい]]感覚を伝達する嗅球において、[[GABA]]陽性の[[介在性ニューロン]]が新生していることが立証されている(文献を御願い致します)。また、[[前頭連合野]]においてもニューロン新生があるとする報告もある(文献を御願い致します。)。 | |||
こうした新生ニューロンは[[神経幹細胞]]と呼ばれる細胞がニューロンに分化する事で生じる。神経幹細胞は、分裂し同じ細胞を作る機能(自己増殖能)と、[[分化]]しニューロンや、[[アストロサイト]]、[[オリゴデンドロサイト]]などを作る機能(多分化能)をあわせ持つ細胞である。この神経幹細胞が、成体脳においても、海馬歯状回など、ニューロン新生が起きている部位には存在しており、新生ニューロンを供給している。本項目では、海馬歯状回のニューロン新生を中心に説明を行う。 | |||
== 細胞メカニズム == | == 細胞メカニズム == | ||
成体海馬新生ニューロンの起源に関し、神経幹細胞の[[蛍光タンパク質|GFP]]標識や核酸アナログ(ブロモデオキシウリジン)を用いて分裂細胞を標識する実験が行われ、歯状回の最内層に存在する神経幹細胞より新生ニューロンが生まれていることが判明した(文献を御願い致します。)。成体の海馬においては、幹細胞としての性質を強く保有するtype-1細胞から、ニューロンとしての性質を部分的に持ち分裂を繰り返すtype-2細胞が分化する。この終末分化からおよそ4週間を経て、新生ニューロンは[[顆粒細胞]]として成長し、海馬回路網に機能的に組み込まれる(文献を御願い致します。)。終末分化から4~8週を経た若い過渡期にある新生ニューロンのことを、狭義には、限定的に新生ニューロンと呼ぶこともある。多くの遺伝仕組み換えマウスを用いた研究においては、この時期の新生ニューロンを特異的に消滅させる実験が実施されている(文献を御願い致します。)。 | |||
== 海馬新生ニューロンの特徴 == | == 海馬新生ニューロンの特徴 == | ||
海馬新生ニューロンは、歯状回の顆粒細胞として機能する。しかし、その機能は周囲にある成熟ずみの顆粒細胞とは大きく異なり、発達期に存在する幼若タイプのニューロンに近く、発火しやすく神経[[可塑性]]に富む(文献を御願い致します。)。一般に顆粒細胞は[[嗅内野]]皮質からの投射([[貫通線維]])を受け神経情報を受容し、[[苔状線維]]を[[CA3]]領域に伸ばしCA3[[錐体細胞]]との間に[[シナプス]]結合を形成する。新生ニューロンは、[[NMDA型グルタミン酸受容体]]を介した神経可塑性に富んでおり<ref name="ref5"><pubmed>15107864</pubmed></ref>、加えて顆粒細胞にしては珍しくGABA神経による強い興奮抑制がない<ref name="ref6"><pubmed>22282476</pubmed></ref>。そのため、歯状回部位における神経信号のゲート機構を担っていることが推測されている。 | |||
そもそも、歯状回部位は、空間記憶における[[パターン分離]]を司っているが<ref name="ref7"><pubmed>17556551</pubmed></ref>、この作用は主に新生ニューロンにより司られていることが判ってきた<ref name="ref8"><pubmed>19590004</pubmed></ref><ref name="ref9"><pubmed>21460835</pubmed></ref><ref name="ref10"><pubmed>22365813</pubmed></ref>。くわえて、新生ニューロンには、記憶をアップデートする機能や<ref name="ref11"><pubmed>19914173</pubmed></ref>、過去の記憶を整理し[[ストレス応答]]を緩和するはたらきがあることもわかってきた<ref name="ref12"><pubmed>12907793</pubmed></ref><ref name="ref13"><pubmed>21814201</pubmed></ref>。確かに、成体脳で新生ニューロンが存在しているのは極めて限られた部位であるが、新生ニューロンは、周辺ニューロンとは極めて異なる機能特性を持っており、この特殊なニューロンが海馬回路に機能的に組み込まれることによって、記憶の[[形成]]・[[維持]]・[[消去]]や、さらには[[感情]]のコントロールへと至る様々な脳機能に対して、中核的なはたらきを示しているのである(文献を御願い致します。)。海馬体からの出力は、[[海馬采]]を経て[[脳弓]]へと至る経路と、嗅内野皮質を経て大脳新皮質の各領域と連結する経路がある(文献を御願い致します。)。ヒトにおいては海馬の前方部位は[[扁桃体]]とのつながりが強く感情コントロールに寄与し、後方の海馬は[[前頭葉]]とのつながりが強く認知機能に深く寄与することが判っている(文献を御願い致します。)。 | |||
== 病的変化 == | == 病的変化 == | ||
===加齢変化=== | ===加齢変化=== | ||
海馬新生ニューロンの数は加齢に伴い、減少することが知られている<ref name="ref3"><pubmed>15788705</pubmed></ref>。加齢により、神経幹細胞の数は比較的保持されるが、新生ニューロンへの分化とその生存が極めて低下することが分かってきた<ref name="ref16"><pubmed>19201065</pubmed></ref> | 海馬新生ニューロンの数は加齢に伴い、減少することが知られている<ref name="ref3"><pubmed>15788705</pubmed></ref>。加齢により、神経幹細胞の数は比較的保持されるが、新生ニューロンへの分化とその生存が極めて低下することが分かってきた<ref name="ref16"><pubmed>19201065</pubmed></ref>。ごく最近、加齢に伴う新生ニューロン数の低下に脳内の[[wikipedia:ja:炎症反応|炎症反応]]が寄与していることが明らかになってきた<ref name="ref17"><pubmed>21886162</pubmed></ref>。 | ||
===疾病下での変化=== | ===疾病下での変化=== | ||
[[認知症]]や[[精神疾患]]においても、新生ニューロンの数やはたらきが低下している<ref name="ref3"><pubmed>15788705</pubmed></ref><ref name="ref18"><pubmed>21395858</pubmed></ref>。[[アルツハイマー病]]モデルマウスを用いてこれまでに多くの研究が実施されている<ref name="ref20"><pubmed>22192775</pubmed></ref>。[[老人斑]]の蓄積に応じて新生ニューロンの数が減少し、そのはたらきも低下している。アルツハイマー病のリスク遺伝子として[[ApoE4]]があるが、ApoE4を遺伝子導入したマウスでは、海馬のGABA回路のはたらきが低下し、新生ニューロン数も減少することがわかった(文献を御願い致します。)。このマウスにGABA回路のはたらきを高める[[フェノバルビタール]]を投与すると新生ニューロン数の減少が抑えられることもわかった<ref name="ref21"><pubmed>19951691</pubmed></ref>。また、[[家族性アルツハイマー病]]の原因遺伝子である[[アミロイド前駆体タンパク質]]を導入したマウスでは、海馬GABA回路のアンバランスがおこり、新生ニューロンのはたらきが低下することが認められている<ref name="ref22"><pubmed>19951690</pubmed></ref>。このように、アルツハイマー病モデルマウスにおいて、海馬新生ニューロンのはたらきが低下する仕組みもわかってきた。 | |||
== 調節 == | == 調節 == | ||
そのため、成体海馬において、新生ニューロンの数を増加させるための諸条件について、特に小動物を用いて非常に精力的に研究が展開されている。[[運動]]や[[学習行動]]など、[[wikipedia:ja:生活習慣|生活習慣]]の改善により新生ニューロン数が増加する点が注目されており、また、各種の[[神経伝達物質]][[受容体]]に対する薬剤が作用を持つことから、海馬回路の活動が直接的あるいは間接的にニューロン新生の過程にはたらきかけていることが推測される。事実、海馬回路の活動が高まると、新生ニューロンの数が増加することが知られている。この一つの仕組みとして、海馬回路から放出されたGABAによりニューロン前駆細胞が刺激され、ニューロン分化が促進することがわかり、GABA回路のはたらきを高める薬剤(フェノバルビタール)を投与することで海馬の新生ニューロンの数が増加することも見出された。 | |||
== 終わりに == | == 終わりに == |