131
回編集
Takeshisakurai (トーク | 投稿記録) 細編集の要約なし |
Takeshisakurai (トーク | 投稿記録) 細編集の要約なし |
||
3行目: | 3行目: | ||
同義語:神経地図形成 | 同義語:神経地図形成 | ||
トポグラフィックマップとはもともと「地形図」という意味であるが、脳科学においては「神経地図形成」とも訳され、[[神経細胞]]の[[投射]]が地形図を作製するように特異的な配置をなす過程をさす。例えば感覚系において、ある特定の身体の位置からの情報を担う神経の[[軸索]]が、ある特定の配置をその系路内で取り、脳内のある特定の標的に到達した際に、その投射が標的領域内で特定の配置を取る過程である。トポグラフィクマッピングは[[感覚系]]での情報処理の基本となる構造を形成するものである。また、脳の[[運動野]] | トポグラフィックマップとはもともと「地形図」という意味であるが、脳科学においては「神経地図形成」とも訳され、[[神経細胞]]の[[投射]]が地形図を作製するように特異的な配置をなす過程をさす。例えば感覚系において、ある特定の身体の位置からの情報を担う神経の[[軸索]]が、ある特定の配置をその系路内で取り、脳内のある特定の標的に到達した際に、その投射が標的領域内で特定の配置を取る過程である。トポグラフィクマッピングは[[感覚系]]での情報処理の基本となる構造を形成するものである。また、脳の[[運動野]]のある位置に存在する神経細胞からの軸索がある特定の身体の位置に投射する場合、脳内の運動野でトポグラフィックな分布があるといえる。ここでは、トポグラフィックマップの神経機能における意義とその分子機構を歴史的な経緯をふまえて感覚系、特に視覚系と嗅覚系を中心にまとめる。 | ||
==トプグラフィックマッピングとその意義== | ==トプグラフィックマッピングとその意義== | ||
9行目: | 9行目: | ||
トポグラフィックマップの一番単純な例は、[[脊髄]]から[[視床]]へ上行する[[脊髄視床路]]で[[末梢]]から脊髄に入る高さによってその系路内での配置が決まるというものであろう。また、有名なものにはモントリオールの[[ペンフィールド|Wilder Penfield]]による[[大脳皮質]]の[[感覚野]]と運動野におけるどの部位が体のどの部位の感覚、運動に対応するかを人の脳でマッピングしたものがある([[cortical homunculus]])(図1)。これは脳のどこを刺激すると体のどこが動くか、また、脳のどこを刺激するとどこが感じたように感じるかを脳外科手術中の患者の脳でマッピングしたもので、1951年に出版されたこのデータは現在でもそのまま通用する正確なものである。 | トポグラフィックマップの一番単純な例は、[[脊髄]]から[[視床]]へ上行する[[脊髄視床路]]で[[末梢]]から脊髄に入る高さによってその系路内での配置が決まるというものであろう。また、有名なものにはモントリオールの[[ペンフィールド|Wilder Penfield]]による[[大脳皮質]]の[[感覚野]]と運動野におけるどの部位が体のどの部位の感覚、運動に対応するかを人の脳でマッピングしたものがある([[cortical homunculus]])(図1)。これは脳のどこを刺激すると体のどこが動くか、また、脳のどこを刺激するとどこが感じたように感じるかを脳外科手術中の患者の脳でマッピングしたもので、1951年に出版されたこのデータは現在でもそのまま通用する正確なものである。 | ||
感覚系のトポグラフィックマッピングには大きく分けて2つの過程がある。一つは神経細胞の軸索が標的にたどり着き標的内でトポグラフィックに配置する[[神経活動]] | 感覚系のトポグラフィックマッピングには大きく分けて2つの過程がある。一つは神経細胞の軸索が標的にたどり着き標的内でトポグラフィックに配置する[[神経活動]]に依存しない(様々な標的認識分子による)メカニズムで、もう一つはその後に行われる標的内での神経活動依存性の配置形成の(ひいてはシナプス形成の)リファインメントの過程である(神経活動依存性ファインチューニング)。この形成は発達段階において起こる。 | ||
高等動物において外界から入力される感覚情報は脳内の特定の領域内において2次元上の神経細胞の[[発火]]パターンへと変換され、これが感覚情報の処理の基盤となる。例えば視覚の場合一つの重要な情報は位置情報であるが、[[網膜]]の中のある視細胞がその受け持つ視覚フィールド内のある位置における情報を受け取り、網膜のそれぞれの[[視細胞]]の情報は脳の特異的な細胞へ伝達される。そうすることによって、網膜内での位置関係(つまりは視覚フィールドにおける位置関係)が脳内での位置関係に転換され、視覚フィールドの空間における位置情報を視覚野で認識することができる。これをするためにはそれぞれの視細胞につながる網膜[[神経節]]細胞の軸索が視覚系においてトポグラフィックにターゲッティングする事が必要となる。これがトポグラフィックマッピングであり、その結果、脳内にトポグラフィックなマップができる。さらに両眼視ができる動物では、両方の眼から入った視野内の同じ地点からの情報は脳内の似たような領域に集束する必要がある。それについてもトポグラフィックなマッピングが必要で、それによって形成された両眼視によってさらに立体視も可能となる。また、視覚によって得られた情報を認知するにあたって視覚野から脳内での行き先によって認知される内容が異なるので(例えばwhatとhow)、この基本に視覚野でのトポグラフィックマッピングがあるとも考えられる([[嗅覚系]]ではある特定の匂いがそれによって引き起こされる特定の行動に結びつく基本にトポグラフィックマップがある。詳しくは嗅覚系の項を参照のこと)。先に述べたように視覚系においても網膜の神経細胞の活動なしに起こる過程と網膜の神経細胞の活動性に依存して起こる過程がある。 | 高等動物において外界から入力される感覚情報は脳内の特定の領域内において2次元上の神経細胞の[[発火]]パターンへと変換され、これが感覚情報の処理の基盤となる。例えば視覚の場合一つの重要な情報は位置情報であるが、[[網膜]]の中のある視細胞がその受け持つ視覚フィールド内のある位置における情報を受け取り、網膜のそれぞれの[[視細胞]]の情報は脳の特異的な細胞へ伝達される。そうすることによって、網膜内での位置関係(つまりは視覚フィールドにおける位置関係)が脳内での位置関係に転換され、視覚フィールドの空間における位置情報を視覚野で認識することができる。これをするためにはそれぞれの視細胞につながる網膜[[神経節]]細胞の軸索が視覚系においてトポグラフィックにターゲッティングする事が必要となる。これがトポグラフィックマッピングであり、その結果、脳内にトポグラフィックなマップができる。さらに両眼視ができる動物では、両方の眼から入った視野内の同じ地点からの情報は脳内の似たような領域に集束する必要がある。それについてもトポグラフィックなマッピングが必要で、それによって形成された両眼視によってさらに立体視も可能となる。また、視覚によって得られた情報を認知するにあたって視覚野から脳内での行き先によって認知される内容が異なるので(例えばwhatとhow)、この基本に視覚野でのトポグラフィックマッピングがあるとも考えられる([[嗅覚系]]ではある特定の匂いがそれによって引き起こされる特定の行動に結びつく基本にトポグラフィックマップがある。詳しくは嗅覚系の項を参照のこと)。先に述べたように視覚系においても網膜の神経細胞の活動なしに起こる過程と網膜の神経細胞の活動性に依存して起こる過程がある。 | ||
58行目: | 58行目: | ||
嗅覚系においてもトポグラフィックマッピングが行われることが知られているが、坂野らのグループによる精力的な研究によりその詳細な分子メカニズムが明らかにされてきている。匂いは[[嗅覚受容体]]で感知されるが、一つの嗅上皮細胞は一種類の嗅覚受容体を発現している。しかしながら、同じ嗅覚受容体を発現する細胞の嗅上皮内における分布はバラバラであるので、同じ嗅覚受容体を発現する細胞からの情報は嗅球の中の同じ糸球体に収束する必要がある。嗅覚受容体はヒトでは約350種類、マウスでは約1000種類の嗅覚受容体が存在し、[[嗅球]]上に嗅覚受容体の数に対応した糸球体を素子とする2次元マップが形成される。 | 嗅覚系においてもトポグラフィックマッピングが行われることが知られているが、坂野らのグループによる精力的な研究によりその詳細な分子メカニズムが明らかにされてきている。匂いは[[嗅覚受容体]]で感知されるが、一つの嗅上皮細胞は一種類の嗅覚受容体を発現している。しかしながら、同じ嗅覚受容体を発現する細胞の嗅上皮内における分布はバラバラであるので、同じ嗅覚受容体を発現する細胞からの情報は嗅球の中の同じ糸球体に収束する必要がある。嗅覚受容体はヒトでは約350種類、マウスでは約1000種類の嗅覚受容体が存在し、[[嗅球]]上に嗅覚受容体の数に対応した糸球体を素子とする2次元マップが形成される。 | ||
嗅球の中での嗅上皮細胞の軸索の配置は前後軸及び背側腹側の軸で決定されているが、背側腹側の軸での配列は嗅上皮内での配置によって決定される。前後軸に関してはどの嗅覚受容体が発現されているかによって産生される[[cAMP]]の量が変わり、これによって[[Sema3A]]/[[neuropilin1]]のカウンターバランスを示す濃度勾配が[[嗅上皮細胞]]の軸索内に発生し、これによって標的にたどり着く前に軸索がソーティングされることによって、前後軸のどこに軸索が到着するかが決定される。背側腹側に関しては、まず、嗅上皮内での[[robo2]]の濃度勾配と嗅球内での[[slit1]]の濃度勾配よってパイオニア軸索の嗅球での配置が背側に決定され、その後、嗅上皮細胞の軸索内での[[Sema3F]]/[[neuropilin2]]のカウンターバランスを示す濃度勾配によって嗅球内での背側腹側の位置が決まる。つまり、後から到着する軸索は先に到着した背側の軸索が発現するSema3Fによってより腹側に配置される(図5)。嗅覚の場合に特徴的なのは、軸索ー軸索の相互作用が非常に重要な役割を果たしていることである。 | 嗅球の中での嗅上皮細胞の軸索の配置は前後軸及び背側腹側の軸で決定されているが、背側腹側の軸での配列は嗅上皮内での配置によって決定される。前後軸に関してはどの嗅覚受容体が発現されているかによって産生される[[cAMP]]の量が変わり、これによって[[Sema3A]]/[[neuropilin1]]のカウンターバランスを示す濃度勾配が[[嗅上皮細胞]]の軸索内に発生し、これによって標的にたどり着く前に軸索がソーティングされることによって、前後軸のどこに軸索が到着するかが決定される。背側腹側に関しては、まず、嗅上皮内での[[robo2]]の濃度勾配と嗅球内での[[slit1]]の濃度勾配よってパイオニア軸索の嗅球での配置が背側に決定され、その後、嗅上皮細胞の軸索内での[[Sema3F]]/[[neuropilin2]]のカウンターバランスを示す濃度勾配によって嗅球内での背側腹側の位置が決まる。つまり、後から到着する軸索は先に到着した背側の軸索が発現するSema3Fによってより腹側に配置される(図5)。嗅覚の場合に特徴的なのは、軸索ー軸索の相互作用が非常に重要な役割を果たしていることである。 これはSperryのモデルとは少し異なり、嗅覚系では軸索間で自律的に制御されているということを示している。これは嗅球がなくてもある程度トポグラフィックマップが形成されるという事実とも合致する。嗅覚系では違う嗅覚受容体の情報がそれぞれの軸索によって伝えられているが、視覚系においては位置情報以外は(網膜のどこからくるか以外は)それぞれの軸索で同じ情報が伝えられているところが異なるのかもしれない。 | ||
こういった過程で軸索が標的位置に到達しシナプスを形成したあと、嗅覚系でも視覚系と同様に神経活動依存的なリファインメントがおこる(隣同士の[[糸球体]]がきっちりとセグレゲートする)。この過程においては神経活動依存的にホモフィリック結合をする[[細胞接着因子]][[Kirrel]]2/3と接着依存性の反発因子である[[EphA5]]-[[EphrinA5]]がやはり濃度勾配を呈する形で発現し、それによって糸球体が相互にセグレゲートする(図3)<ref><pubmed>21469960</pubmed></ref>。 | こういった過程で軸索が標的位置に到達しシナプスを形成したあと、嗅覚系でも視覚系と同様に神経活動依存的なリファインメントがおこる(隣同士の[[糸球体]]がきっちりとセグレゲートする)。この過程においては神経活動依存的にホモフィリック結合をする[[細胞接着因子]][[Kirrel]]2/3と接着依存性の反発因子である[[EphA5]]-[[EphrinA5]]がやはり濃度勾配を呈する形で発現し、それによって糸球体が相互にセグレゲートする(図3)<ref><pubmed>21469960</pubmed></ref>。 | ||
66行目: | 66行目: | ||
=== その他 === | === その他 === | ||
その他、[[聴覚]]系(音の周波数情報)、[[体性感覚]] | その他、[[聴覚]]系(音の周波数情報)、[[体性感覚]]系(身体における位置情報、特にマウスやラットの髭とバレル皮質の系)、運動系(身体における位置情報)、[[味覚]]系(違う味覚物質を感受する受容体からの情報)などのトポグラフィックマップが研究されている。 | ||
== 関連項目 == | == 関連項目 == |
回編集