39
回編集
細編集の要約なし |
細編集の要約なし |
||
1行目: | 1行目: | ||
英語名:Calcium channel | 英語名:Calcium channel | ||
同義語:電位依存性カルシウムチャネル (Voltage-dependent calcium channel : VDCC、Voltage-gated calcium channel : VGCC)<br> | 同義語:電位依存性カルシウムチャネル (Voltage-dependent calcium channel : VDCC、Voltage-gated calcium channel : VGCC)<br> | ||
形質膜越えのカルシウムイオン (Ca<sup>2+</sup>) 流入経路として、異なる活性化機構により開口するカルシウムチャネルが知られる。 それらの中でも膜電位の脱分極によって開口する電位依存性カルシウムチャネル (Voltage-dependent calcium channel : VDCC) が最も深く研究されてきた。VDCCは神経細胞や筋細胞を始めとする興奮性細胞において、様々な分子と相互作用することにより神経伝達物質放出、筋収縮、遺伝子発現など様々なCa<sup>2+</sup>依存性の細胞応答を制御する。 本項目では他のカルシウムチャネルについても言及したい。<br> | 形質膜越えのカルシウムイオン (Ca<sup>2+</sup>) 流入経路として、異なる活性化機構により開口するカルシウムチャネルが知られる。 それらの中でも膜電位の脱分極によって開口する電位依存性カルシウムチャネル (Voltage-dependent calcium channel : VDCC) が最も深く研究されてきた。VDCCは神経細胞や筋細胞を始めとする興奮性細胞において、様々な分子と相互作用することにより神経伝達物質放出、筋収縮、遺伝子発現など様々なCa<sup>2+</sup>依存性の細胞応答を制御する。 本項目では他のカルシウムチャネルについても言及したい。<br> | ||
==分類、構造、発現==<br> | ==分類、構造、発現==<br> VDCCは、形質膜の脱分極を感知して活性化開口し、細胞外から細胞内へCa2+を選択的に透過させるイオンチャネルであり、細胞の電気的興奮をCa2+依存的な生理応答に変換する役割を担う。開口する電位によりVDCCは、高電位 (~20 mV)で活性化するL型 (Cav1)および非L型 (Cav2) と低電位 (~60 mV) で活性するT型 (Cav3) に大別される[1][2][3]。高電位活性化型のVDCCは、α1、α2δ、βおよびγサブユニットから成るヘテロ4量体を形成すると考えられている (図1)。<br>α1サブユニット<br>電位センサーとチャネル孔を有するα1サブユニットは、おおよそ2000アミノ酸残基からなるタンパク質であり、膜貫通領域S1~S6の構造単位が4回繰り返す (リピートI~IV) (図2)。S5領域とS6領域の間がCa2+を選択的に透過させるチャネル孔を形成し、S4領域が電位センサーとして働く。α1サブユニットは10種類の異なる遺伝子Cavによりコードされて、電気生理学的特性や薬理学的特性による機能分類 (L, P/Q, N, R, T) に対応付けられている (図3、4) [4]。<br>Cav1 (L型)<br>L型 (Cav1) は遅い不活性化 (Long lasting) と大きな (Large) 単一チャネルコンダクタンスを有することから名づけられた[5]。Dihydropyridine (DHP) やPhenylalkylamine (PAA)、Benzothiazepine (BTZ) といったCa2+拮抗薬の作用点である。Cav1.1は骨格筋、Cav1.2は心臓や脳、Cav1.3は膵臓などの内分泌組織や脳、Cav1.4は網膜に主に発現している[3]。<br>Cav2 (N, P/Q, R型)<br>非L型 (Cav2) にはN、P/Q、R型が含まれる。N型 (Cav2.2) には、L型ではない (Non-L) 、神経細胞に発現する (Neuronal) という意味がある[6]。ペプチド性のイモ貝毒ω-コノトキシン GVIAにより選択的に阻害される[7]。P型は小脳プルキンエ (Purkinje) 細胞においてDHPとω-コノトキシン GVIAの両方に非感受性のCa2+電流として同定された[8]。クモ毒ω-アガトキシンIVAによって選択的に阻害される[9]。Q型は、同じ遺伝子 (Cav2.1) のスプライスバリアントであると考えられており[11]、小脳顆粒細胞において初めて電流が同定された。Q型はP型よりω-アガトキシンIVAに対する親和性が低い[10]。R型 (Cav2.3) は小脳顆粒細胞においてDHP、ω-コノトキシン GVIA、ω-アガトキシンIVAによって阻害されない残りの成分 (Residual) という意味で名づけられ[10]、タランチュラ毒素SNX-482によって選択的に阻害される[12]。これら非L型のVDCCは広く神経系に発現している[3]。<br>Cav3 (T型)<br>T型 (Cav3) は低電位 (~60 mV) で活性化し、早い不活性化や遅い脱活性化 (一過的: Transient)、小さい (Tiny) 単一チャネルコンダクタンスを特徴とする[1][6]。T型は脳に最も豊富に発現する他、心臓のペースメーカー細胞にも発現している。T型は高閾値活性化型のVDCCとは異なり、α2δ、β、γサブユニットとの相互作用が確認されていない。<br>副サブユニット (α2δ、β、γ)<br>α2δ、βおよびγサブユニットは、チャネル本体であるα1サブユニットの発現調節、機能調節や細胞内局在に重要であり、複数の遺伝子によってコードされている[13]。<br>大きな細胞外領域を有するα2δサブユニットは、単一の遺伝子にコードされるα2およびδがジスルフィド結合によって結ばれた二量体で、4種類のアイソフォームが知られる (α2δ1-4)。α2δサブユニットは、α1サブユニットの形質膜への輸送に働いている[14]。α1サブユニットのリピートIとIIをつなぐ細胞内リンカーに結合するβサブユニットは、4種類のアイソフォームが知られている (β1-4)。このβサブユニットは、α1サブユニットの形質膜における機能的な発現に重要であり[15]、VDCCの活性化や不活性化を促進する[16]。各アイソフォームには複数のスプライスバリアントが存在し、発現分布やチャネル機能の調節に違いがある[16]。γサブユニットは4回膜貫通のタンパク質であり、VDCCと相互作用することで不活性化曲線をシフトさせる[17]。γサブユニットには8種類のアイソフォームが存在し (γ1-8)、その中のいくつかのアイソフォームは、AMPA (2-amino-3-[3-hydroxy-5-methyl-4-isoxazolyl]propionic acid) 受容体の輸送や機能調節を担う主要なタンパク質TARPs (Transmembrane AMPA receptor regulatory proteins) とも呼ばれている[17]。<br> | ||
==機能==<br>異なるαサブユニット (Cav) を含むVDCCは、神経伝達物質放出、シナプス可塑性、細胞の興奮性の調節、筋収縮、遺伝子発現など、異なる生理応答を制御する。<br>Cav1 (L型)<br>L型は、骨格筋や心筋、平滑筋の収縮に始まり、ホルモンや神経伝達物質の放出、遺伝子発現まで様々な細胞応答に関わる。骨格筋の横行小管 (T管) に発現するCav1.1は、脱分極による構造変化を介してリアノジン受容体を直接活性化し、Ca2+放出を誘導することで筋収縮を引き起こす[18]。一方、心筋ではCav1.2からのCa2+流入がCa2+依存的にリアノジン受容体を活性化し、筋収縮を引き起こす[19]。Cav1.2およびCav1.3は、膵臓のβ細胞におけるインスリン分泌も制御している[20]。また、Cav1.3およびCav1.4は感覚受容細胞のリボンシナプスにおける神経伝達物質放出に関与している[4]。聴覚有毛細胞ではCav1.3が[21]、網膜の光受容細胞ではCav1.4が神経伝達物質の放出を制御している[22]。神経細胞においては、L型は細胞体や細胞体近傍の樹状突起に局在しており、近い位置での細胞内Ca2+濃度 ([Ca2+]i) 上昇の引き金となり、下流で核内のシグナル伝達、およびCa2+濃度上昇を引き起こす[4]。L型は、遺伝子発現に重要なシグナル分子であるCaM (calmodulin) 、AKAP (A kinase anchor protein) ファミリー、チロシンリン酸化酵素であるSrc、脱リン酸化酵素であるCaN (calcineurin) などと共役して働き (図2)、CREB (cAMP response element binding protein) [23] やNFAT (Nuclear factor of activated T-cells) といった転写因子の活性を調節することが知られる[4] 。<br>Cav2 (N, P/Q, R型)<br>N、P/Q、R型は主に神経系に発現し、神経伝達物質放出を始めとする神経機能を制御する[24][25]。活動電位がシナプス前終末に達すると、N、P/Q、R型などのVDCCを介したCa2+流入が引き起こされ、神経伝達物質が放出される。シナプス前終末において神経伝達物質放出を効率的に制御するため、シナプス小胞の膜融合を制御するSNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor ) タンパク質 (syntaxin、SNAP-25、VAMP/synaptobrevin)やCa2+センサーと考えられているsynaptotagmin、足場タンパク質として働くRIM (Rab-3 interacting molecule) ファミリー、CAST、Munc13、Bassoon、Piccoloといったタンパク質群とVDCCは巨大タンパク質複合体である、アクティブゾーンを形成している。N、P/Q型のα1サブユニットのII-IIIリンカーにはアクティブゾーンに存在するタンパク質との相互作用部位 (Synprint ; synaptic protein interaction) が保存されており、syntaxinやSNAP-25、CSP (cysteine string protein)、RIM、synaptotagminと相互作用する (図2) [4][26]。syntaxinやSNAP-25はsynprint領域を介してVDCCと相互作用し、チャネルの不活性化状態を安定化させることでチャネル活性を抑制することが報告されている[26]。また、βサブユニットもCASTやRIM、synaptotagminといったアクティブゾーンに存在するタンパク質と相互作用する (図2) [27][28][29]。これらのタンパク質との相互作用は、神経伝達物質放出複合体を形成し、VDCCの機能修飾も担う。RIM1のα型バリアント (RIM1α) はシナプス小胞のRab3と相互作用する足場タンパク質であることから、VDCCとシナプス小胞の距離を規定する分子である可能性が高い[30]。4種類のRIM (RIM1~4) はどれもVDCCの不活性化を著しく遅らせることでCa2+流入量を増加させる[28]。このように、VDCCはアクティブゾーンのタンパク質と共役して働くことで、高効率的に神経伝達物質放出やシナプス可塑性を制御すると考えられる。<br>Cav3 (T型)<br>T型は、一過的にCa2+を流入させることで、活動電位の発生パターンを調節する。心臓の洞房結節に存在するペースメーカー細胞における拍動の形成や[31]、睡眠時の特徴的な脳波を形成する視床のリレー細胞における周期的な発火に関わっている[32]。<br><br><br> |
回編集