「遠心性コピー」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
編集の要約なし
7行目: 7行目:
<ref>'''von Holst EV and Mittelstaedt H'''<br>The reafference principle. <br>''Naturwissenschaften, 37, 464–467 '':1950</ref><ref><pubmed>14794830</pubmed></ref>。キャンセレーションには、眼球の運動位置信号が重要となるが、脳内で考えられる信号源として2つの候補が考えられる。1つは眼筋に存在する伸張受容器からの固有感覚(proprioception)であり、もう1つは眼球運動系への運動指令信号を眼球の位置変化信号として感覚系に戻す随伴発射(corollary discharge)・遠心性コピー(efference copy)である[随伴発射と遠心性コピーの違いに関してはCrapse and Sommer(2008)<ref><pubmed>18641666</pubmed></ref>を参照のこと]。
<ref>'''von Holst EV and Mittelstaedt H'''<br>The reafference principle. <br>''Naturwissenschaften, 37, 464–467 '':1950</ref><ref><pubmed>14794830</pubmed></ref>。キャンセレーションには、眼球の運動位置信号が重要となるが、脳内で考えられる信号源として2つの候補が考えられる。1つは眼筋に存在する伸張受容器からの固有感覚(proprioception)であり、もう1つは眼球運動系への運動指令信号を眼球の位置変化信号として感覚系に戻す随伴発射(corollary discharge)・遠心性コピー(efference copy)である[随伴発射と遠心性コピーの違いに関してはCrapse and Sommer(2008)<ref><pubmed>18641666</pubmed></ref>を参照のこと]。
視野安定性を維持するためには、どちらの経路がより重要なのであろうか?眼筋を麻痺させているときに眼を随意的に動かそうとすると(運動指令は出力されるが、眼は実際には動かない)、眼を動かそうとした方向に外界が動いて見える<ref><pubmed>1258394</pubmed></ref>。また、瞼(まぶた)の上から眼球を指で押して受動的に動かすと、外界が動いて知覚される。さらに、固有感覚信号が皮質に伝達されるにはある程度の時間遅れ(80 ms)が存在するため<ref><pubmed>17396123</pubmed></ref>、サッケードのような急速性眼球運動における視野安定性を説明することが難しい。これらの結果は、固有感覚よりも随伴発射(遠心性コピー)から得られる眼球位置情報の方が視野安定性により強く貢献していることを示唆する。近年、霊長類において視野安定性に貢献する随伴発射の伝達経路の一つが初めて同定され<ref><pubmed>12029137</pubmed></ref>、これらの現象の基盤となる神経機構の解明が進んでいる<ref><pubmed>21242138</pubmed></ref>。
視野安定性を維持するためには、どちらの経路がより重要なのであろうか?眼筋を麻痺させているときに眼を随意的に動かそうとすると(運動指令は出力されるが、眼は実際には動かない)、眼を動かそうとした方向に外界が動いて見える<ref><pubmed>1258394</pubmed></ref>。また、瞼(まぶた)の上から眼球を指で押して受動的に動かすと、外界が動いて知覚される。さらに、固有感覚信号が皮質に伝達されるにはある程度の時間遅れ(80 ms)が存在するため<ref><pubmed>17396123</pubmed></ref>、サッケードのような急速性眼球運動における視野安定性を説明することが難しい。これらの結果は、固有感覚よりも随伴発射(遠心性コピー)から得られる眼球位置情報の方が視野安定性により強く貢献していることを示唆する。近年、霊長類において視野安定性に貢献する随伴発射の伝達経路の一つが初めて同定され<ref name=ref2><pubmed>12029137</pubmed></ref>、これらの現象の基盤となる神経機構の解明が進んでいる<ref><pubmed>21242138</pubmed></ref>。


== サッケード眼球運動と視野安定性 ==  
== サッケード眼球運動と視野安定性 ==  
サッケード眼球運動に関係した随伴発射が上丘から視床の背内側核(the mediodorsal thalamus)を介してFEF(the frontal eye field)に伝わることが報告されている。実験では、サルにダブルステップ刺激課題を行なわせた。この課題では、短期間だけ呈示されるフラッシュ刺激が異なる視野位置に続けて与えられ、それぞれの刺激位置を順にサッケード眼球運動で追従することが求められる。2つの刺激とも最初のサッケードが生じる前に消失するため、最初のサッケード(S1)は1つ目の目標位置(T1)に向かって行なえばよいが、2度目のサッケード(S2)は次の目標位置(T2)から最初のサッケードの位置変化分(S1)を差し引いた方向(T2 - S1)にサッケードを行なわなければならない(T1, T2, S1, S2は方向ベクトルをあらわす)。すなわち、2度目のサッケードを正しく行なうためには、最初のサッケードによる眼球位置変化を脳内で正確に把握している必要がある。
サッケード眼球運動に関係した随伴発射が上丘から視床の背内側核(the mediodorsal thalamus)を介してFEF(the frontal eye field)に伝わることが報告されている。実験では、サルにダブルステップ刺激課題を行なわせた。この課題では、短期間だけ呈示されるフラッシュ刺激が異なる視野位置に続けて与えられ、それぞれの刺激位置を順にサッケード眼球運動で追従することが求められる。2つの刺激とも最初のサッケードが生じる前に消失するため、最初のサッケード(S1)は1つ目の目標位置(T1)に向かって行なえばよいが、2度目のサッケード(S2)は次の目標位置(T2)から最初のサッケードの位置変化分(S1)を差し引いた方向(T2 - S1)にサッケードを行なわなければならない(T1, T2, S1, S2は方向ベクトルをあらわす)。すなわち、2度目のサッケードを正しく行なうためには、最初のサッケードによる眼球位置変化を脳内で正確に把握している必要がある。
SommerとWurtz(2002)<ref><pubmed>12029137</pubmed></ref>は、視床の背内側核において上丘(the superior colliculus: SC)から神経入力を受け、前頭眼野(the frontal eye field: FEF)に神経出力を送っている求心性経路の中継ニューロンを同定し、それらのニューロンがサッケード眼球運動時に一過性の活動を示すこと見出した。このようなニューロンが存在する部位に、ムシモール(GABA受容体のアゴニスト)を投与することによって背内側核の機能を一時的に脱落させると、ダブルステップ刺激に対する2度目のサッケードの位置精度の低下が観察された。シングルステップ刺激に対するサッケードには影響が生じなかったことから、求心性経路の障害により最初のサッケード運動指令由来の随伴発射が正しく送れなくなったため、2度目のサッケード精度が低下したと考えられた。
SommerとWurtz(2002)<ref name=ref2 />は、視床の背内側核において上丘(the superior colliculus: SC)から神経入力を受け、前頭眼野(the frontal eye field: FEF)に神経出力を送っている求心性経路の中継ニューロンを同定し、それらのニューロンがサッケード眼球運動時に一過性の活動を示すこと見出した。このようなニューロンが存在する部位に、ムシモール(GABA受容体のアゴニスト)を投与することによって背内側核の機能を一時的に脱落させると、ダブルステップ刺激に対する2度目のサッケードの位置精度の低下が観察された。シングルステップ刺激に対するサッケードには影響が生じなかったことから、求心性経路の障害により最初のサッケード運動指令由来の随伴発射が正しく送れなくなったため、2度目のサッケード精度が低下したと考えられた。
通常、視覚応答性ニューロンの[[受容野]]は視野内で固定している。しかしながら、視野安定性に関与している領野では、随伴発射信号によってニューロンの受容野がシフトしている可能性がある。この可能性を検討するため、上丘から随伴発射信号が送られている前頭眼野でサッケード前後の視覚性応答が調べられた。サッケード後にニューロンの受容野内となる空間位置に対して、視覚刺激をサッケード前に呈示したところニューロン活動に視覚性応答が見出された。さらに、このような「未来の受容野」に対する刺激で生じたニューロン活動は、視床背内側核の機能を薬物により不活性化すると著しく減衰した。これらの結果は、サッケード前後の視覚安定性に貢献すると考えられる神経メカニズムの存在と、それが機能するためには視床の背内側核を経由する求心性経路が重要であることを示唆した<ref><pubmed>17093408</pubmed></ref>。
通常、視覚応答性ニューロンの[[受容野]]は視野内で固定している。しかしながら、視野安定性に関与している領野では、随伴発射信号によってニューロンの受容野がシフトしている可能性がある。この可能性を検討するため、上丘から随伴発射信号が送られている前頭眼野でサッケード前後の視覚性応答が調べられた。サッケード後にニューロンの受容野内となる空間位置に対して、視覚刺激をサッケード前に呈示したところニューロン活動に視覚性応答が見出された。さらに、このような「未来の受容野」に対する刺激で生じたニューロン活動は、視床背内側核の機能を薬物により不活性化すると著しく減衰した。これらの結果は、サッケード前後の視覚安定性に貢献すると考えられる神経メカニズムの存在と、それが機能するためには視床の背内側核を経由する求心性経路が重要であることを示唆した<ref><pubmed>17093408</pubmed></ref>。
31

回編集

案内メニュー