「Rhoファミリー低分子量Gタンパク質」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
編集の要約なし
39行目: 39行目:
=== Rhoエフェクター<br> ===
=== Rhoエフェクター<br> ===


Rhoの活性化はアクチン重合促進とミオシン軽鎖活性化によるアクトミオシン束の形成を誘導する<ref name="ref18"><pubmed>9247125</pubmed></ref>。Rhoによるアクチン細胞骨格制御にはROCK(Rho kinase; Rho-associated kinase)とmDiaの二つのエフェクター分子が主要な役割を担う<ref name="ref19"><pubmed>19160018</pubmed></ref>。<br>ROCKは活性型Rhoにより活性化されるserine/threonine kinaseで、キナーゼ領域以外にcoiled-coil領域、Rho結合領域、PH領域からなる。数多くの基質が知られているが、このうちアクチン細胞骨格制御に関わるものはミオシン軽鎖(myosin light chain; MLC)とミオシン軽鎖脱リン酸化酵素(myosin light chain phosphatase; MLCP)である。ROCKによるMLCリン酸化はMLCを活性化し、アクトミオシン束の形成を促す<ref name="ref20"><pubmed>8702756</pubmed></ref>。また、ROCKによるMLCPのリン酸化はMLCPの酵素活性を阻害することで、間接的にMLCリン酸化を促進する<ref name="ref21"><pubmed>8662509</pubmed></ref> <ref name="ref22"><pubmed>9353125</pubmed></ref>。さらに、ROCKはLIMキナーゼ(LIM kinase)を活性化してcofilinのリン酸化を促し、cofilinによるアクチン脱重合を阻害する<ref name="ref23"><pubmed>10436159</pubmed></ref>。また、ROCKは脱リン酸化酵素PTENの活性も増強する<ref name="ref24"><pubmed>15793569</pubmed></ref>。フォスファチジルイノシトール三リン酸PtdIns(3,4,5)P3の局在は、細胞遊走や突起伸展における細胞極性の形成に不可欠である。PTENはPtdIns(3,4,5)P3を脱リン酸化してPtdIns(4,5)P2に変換することから、細胞極性の形成におけるRho-ROCK-PTEN経路の関与が示唆される<ref name="ref24" />。<br>mDiaは異なる遺伝子でコードされるmDia1、mDia2、mDia3の三つのアイソフォームからなり、mDia1とmDia3が脳内では強く発現する<ref name="ref25"><pubmed>22246438</pubmed></ref>。いずれもプロフィリンと結合するFH1ドメインとアクチン重合促進に必須のFH2ドメインを持つ<ref name="ref26"><pubmed>17373907</pubmed></ref>。不活性化状態ではN末端のDia inhibitory domain (DID)とC末端のDiaphanous autoregulatory domain (DAD)の間で分子内結合を形成するが、活性型RhoがDIDの近傍にあるRho結合ドメインに結合することでDID-DAD間の分子間結合が解除される。これにより、mDiaはプロフィリンと単量体アクチンの複合体に結合してアクチン重合核を形成し、さらにアクチン線維の反矢じり端(barbed end)に単量体アクチンを付加して、直鎖状のアクチン線維の重合を促す<ref name="ref26" /> <ref name="ref27"><pubmed>15044801</pubmed></ref>。<br>線維芽細胞株で見られるRho活性化によるアクトミオシン束の形成には、ROCKによるミオシン活性化とmDiaによる直鎖状アクチン線維形成の両者が不可欠である<ref name="ref28"><pubmed>10559899</pubmed></ref>。また、mDiaはアクチン線維形成に加えて、微小管の安定化や配向の制御にも関わる<ref name="ref29"><pubmed>11483957</pubmed></ref> <ref name="ref30"><pubmed>11146620</pubmed></ref>。特にmDia2は微小管のプラス端に結合するEB1やAPCに結合して、微小管の安定性を制御することが示唆されている<ref name="ref31"><pubmed>15311282</pubmed></ref>。  
 Rhoの活性化はアクチン重合促進とミオシン軽鎖活性化によるアクトミオシン束の形成を誘導する<ref name="ref18"><pubmed>9247125</pubmed></ref>。Rhoによるアクチン細胞骨格制御にはROCK(Rho kinase; Rho-associated kinase)とmDiaの二つのエフェクター分子が主要な役割を担う<ref name="ref19"><pubmed>19160018</pubmed></ref>。<br> ROCKは活性型Rhoにより活性化されるserine/threonine kinaseで、キナーゼ領域以外にcoiled-coil領域、Rho結合領域、PH領域からなる。数多くの基質が知られているが、このうちアクチン細胞骨格制御に関わるものはミオシン軽鎖(myosin light chain; MLC)とミオシン軽鎖脱リン酸化酵素(myosin light chain phosphatase; MLCP)である。ROCKによるMLCリン酸化はMLCを活性化し、アクトミオシン束の形成を促す<ref name="ref20"><pubmed>8702756</pubmed></ref>。また、ROCKによるMLCPのリン酸化はMLCPの酵素活性を阻害することで、間接的にMLCリン酸化を促進する<ref name="ref21"><pubmed>8662509</pubmed></ref> <ref name="ref22"><pubmed>9353125</pubmed></ref>。さらに、ROCKはLIMキナーゼ(LIM kinase)を活性化してcofilinのリン酸化を促し、cofilinによるアクチン脱重合を阻害する<ref name="ref23"><pubmed>10436159</pubmed></ref>。また、ROCKは脱リン酸化酵素PTENの活性も増強する<ref name="ref24"><pubmed>15793569</pubmed></ref>。フォスファチジルイノシトール三リン酸PtdIns(3,4,5)P3の局在は、細胞遊走や突起伸展における細胞極性の形成に不可欠である。PTENはPtdIns(3,4,5)P3を脱リン酸化してPtdIns(4,5)P2に変換することから、細胞極性の形成におけるRho-ROCK-PTEN経路の関与が示唆される<ref name="ref24" />。<br> mDiaは異なる遺伝子でコードされるmDia1、mDia2、mDia3の三つのアイソフォームからなり、mDia1とmDia3が脳内では強く発現する<ref name="ref25"><pubmed>22246438</pubmed></ref>。いずれもプロフィリンと結合するFH1ドメインとアクチン重合促進に必須のFH2ドメインを持つ<ref name="ref26"><pubmed>17373907</pubmed></ref>。不活性化状態ではN末端のDia inhibitory domain (DID)とC末端のDiaphanous autoregulatory domain (DAD)の間で分子内結合を形成するが、活性型RhoがDIDの近傍にあるRho結合ドメインに結合することでDID-DAD間の分子間結合が解除される。これにより、mDiaはプロフィリンと単量体アクチンの複合体に結合してアクチン重合核を形成し、さらにアクチン線維の反矢じり端(barbed end)に単量体アクチンを付加して、直鎖状のアクチン線維の重合を促す<ref name="ref26" /> <ref name="ref27"><pubmed>15044801</pubmed></ref>。<br>線維芽細胞株で見られるRho活性化によるアクトミオシン束の形成には、ROCKによるミオシン活性化とmDiaによる直鎖状アクチン線維形成の両者が不可欠である<ref name="ref28"><pubmed>10559899</pubmed></ref>。また、mDiaはアクチン線維形成に加えて、微小管の安定化や配向の制御にも関わる<ref name="ref29"><pubmed>11483957</pubmed></ref> <ref name="ref30"><pubmed>11146620</pubmed></ref>。特にmDia2は微小管のプラス端に結合するEB1やAPCに結合して、微小管の安定性を制御することが示唆されている<ref name="ref31"><pubmed>15311282</pubmed></ref>。  


=== Rac/Cdc42エフェクター<br> ===
=== Rac/Cdc42エフェクター<br> ===
61行目: 61行目:
=== 神経突起の伸展<br> ===
=== 神経突起の伸展<br> ===


 神経突起の形成と伸長は、突起先端の成長円錐でのアクチン細胞骨格の再編成と、それに引き続く微小管の配向、安定化を必要とする。PC12やN1E-115など神経様細胞株を用いた解析から、Rhoの活性化は突起伸展を抑制し、Rac及びCdc42の活性化は突起伸展を促進することが示された<ref name="ref60"><pubmed>10594018</pubmed></ref> <ref name="ref61"><pubmed>11279039</pubmed></ref>。初代培養神経細胞においても、Rho、Rac、Cdc42は同様の作用を示す<ref name="ref62"><pubmed>15630019</pubmed></ref>。Rhoによる突起伸展抑制にはROCKが重要な働きを担う<ref name="ref62" />。Rho-ROCKの活性化は成長円錐におけるアクトミオシン束を増強することが報告されている<ref name="ref63"><pubmed>14659092</pubmed></ref>。また、Rho-ROCK経路による突起伸展抑制には、LIM kinaseによるアクチン脱重合抑制が関与することも示唆されている<ref name="ref64"><pubmed>10839361</pubmed></ref>。突起伸展に伴い、ROCKは軸索伸展に不可欠なCRMP-2をリン酸化して、その機能を抑制する<ref name="ref65"><pubmed>16260611</pubmed></ref>。一方、初代培養神経細胞では、SDF-1α投与による突起伸展促進におけるmDiaの重要性が示唆されているが<ref name="ref66"><pubmed>12707308</pubmed></ref> <ref name="ref67"><pubmed>18701697</pubmed></ref>、生理的な突起伸展制御におけるmDiaの役割は不明である。Racによる突起伸展促進作用には、WAVE-Arp2/3による成長円錐のラメリポディア形成の役割が示唆されている<ref name="ref34" />。Cdc42による神経突起伸展にはN-WASP-Arp2/3が関与する<ref name="ref68"><pubmed>10766829</pubmed></ref>。<br> 上記の研究は主に軸索を対象として行われてきたが、同様のRho familyの役割が樹状突起の形成においても示されている<ref name="ref62" />。すなわち、Rho-ROCKの活性化は樹状突起の形成を抑制し、すでに形成された樹状突起を単純化させる。一方、Racは樹状突起の形成に促進的に働く。Cdc42も樹状突起の形成に促進的に働くことが報告されてはいるが、抑制に働くとする報告もある。<br> 細胞外刺激による神経突起伸展におけるRho familyの制御機構についても研究が進んでいる。神経突起伸展に伴うRhoの活性抑制には、別のRho familyタンパク質であるRndが重要な働きを持つことが示されている。例えばRnd3/RhoEの遺伝子欠損マウス由来の海馬初代培養神経細胞では、Rho-ROCKの活性亢進により神経突起の数や長さが減少する<ref name="ref69"><pubmed>22428561</pubmed></ref>。PC12細胞では、FGF刺激による神経突起伸展促進におけるRnd1の関与も示されている<ref name="ref70"><pubmed>11095956</pubmed></ref>。Rnd1とRnd3はp190RhoGAPによりRhoの不活性化を促すことから<ref name="ref13?">、この作用が突起伸展を促進する可能性が考えられる。神経突起伸展に伴うRacの活性化には、別のRho familyタンパクであるRhoGの関与が報告されている<ref name="ref71"><pubmed>12879077</pubmed></ref>。RhoGは足場タンパクElmoとRac GEFのDock180と三量体を形成しているが、NGF受容体の活性化はTrioを介しRhoGを活性化し、これがElmo-Dock180を介したRac活性化を促す<ref name="ref71" />。<br> 神経活動はNMDA受容体活性化による樹状突起伸展を促すが、この作用にはRhoAの抑制とRac、Cdc42の活性化の関与が示唆されている。海馬初代培養神経細胞では、NMDA受容体活性化が細胞内Ca2+依存的にTiam1をリン酸化し、これがRacの活性化を介して樹状突起伸展を促進することが示唆されている<ref name="ref72"><pubmed>15721239</pubmed></ref>。また、海馬初代培養神経細胞では、BDNFによる樹状突起伸展の促進にCLICKIII/CaMKIγが重要であること、この下流でRac GEFのSTEFによるRac活性化が関わることが示唆されている<ref name="ref73"><pubmed>17553424</pubmed></ref>。  
 神経突起の形成と伸長は、突起先端の成長円錐でのアクチン細胞骨格の再編成と、それに引き続く微小管の配向、安定化を必要とする。PC12やN1E-115など神経様細胞株を用いた解析から、Rhoの活性化は突起伸展を抑制し、Rac及びCdc42の活性化は突起伸展を促進することが示された<ref name="ref60"><pubmed>10594018</pubmed></ref> <ref name="ref61"><pubmed>11279039</pubmed></ref>。初代培養神経細胞においても、Rho、Rac、Cdc42は同様の作用を示す<ref name="ref62"><pubmed>15630019</pubmed></ref>。Rhoによる突起伸展抑制にはROCKが重要な働きを担う<ref name="ref62" />。Rho-ROCKの活性化は成長円錐におけるアクトミオシン束を増強することが報告されている<ref name="ref63"><pubmed>14659092</pubmed></ref>。また、Rho-ROCK経路による突起伸展抑制には、LIM kinaseによるアクチン脱重合抑制が関与することも示唆されている<ref name="ref64"><pubmed>10839361</pubmed></ref>。突起伸展に伴い、ROCKは軸索伸展に不可欠なCRMP-2をリン酸化して、その機能を抑制する<ref name="ref65"><pubmed>16260611</pubmed></ref>。一方、初代培養神経細胞では、SDF-1α投与による突起伸展促進におけるmDiaの重要性が示唆されているが<ref name="ref66"><pubmed>12707308</pubmed></ref> <ref name="ref67"><pubmed>18701697</pubmed></ref>、生理的な突起伸展制御におけるmDiaの役割は不明である。Racによる突起伸展促進作用には、WAVE-Arp2/3による成長円錐のラメリポディア形成の役割が示唆されている<ref name="ref34" />。Cdc42による神経突起伸展にはN-WASP-Arp2/3が関与する<ref name="ref68"><pubmed>10766829</pubmed></ref>。<br> 上記の研究は主に軸索を対象として行われてきたが、同様のRho familyの役割が樹状突起の形成においても示されている<ref name="ref62" />。すなわち、Rho-ROCKの活性化は樹状突起の形成を抑制し、すでに形成された樹状突起を単純化させる。一方、Racは樹状突起の形成に促進的に働く。Cdc42も樹状突起の形成に促進的に働くことが報告されてはいるが、抑制に働くとする報告もある。<br> 細胞外刺激による神経突起伸展におけるRho familyの制御機構についても研究が進んでいる。神経突起伸展に伴うRhoの活性抑制には、別のRho familyタンパク質であるRndが重要な働きを持つことが示されている。例えばRnd3/RhoEの遺伝子欠損マウス由来の海馬初代培養神経細胞では、Rho-ROCKの活性亢進により神経突起の数や長さが減少する<ref name="ref69"><pubmed>22428561</pubmed></ref>。PC12細胞では、FGF刺激による神経突起伸展促進におけるRnd1の関与も示されている<ref name="ref70"><pubmed>11095956</pubmed></ref>。Rnd1とRnd3はp190RhoGAPによりRhoの不活性化を促すことから<ref name=fer71/>、この作用が突起伸展を促進する可能性が考えられる。神経突起伸展に伴うRacの活性化には、別のRho familyタンパクであるRhoGの関与が報告されている<ref name="ref71"><pubmed>12879077</pubmed></ref>。RhoGは足場タンパクElmoとRac GEFのDock180と三量体を形成しているが、NGF受容体の活性化はTrioを介しRhoGを活性化し、これがElmo-Dock180を介したRac活性化を促す<ref name="ref71" />。<br> 神経活動はNMDA受容体活性化による樹状突起伸展を促すが、この作用にはRhoAの抑制とRac、Cdc42の活性化の関与が示唆されている。海馬初代培養神経細胞では、NMDA受容体活性化が細胞内Ca2+依存的にTiam1をリン酸化し、これがRacの活性化を介して樹状突起伸展を促進することが示唆されている<ref name="ref72"><pubmed>15721239</pubmed></ref>。また、海馬初代培養神経細胞では、BDNFによる樹状突起伸展の促進にCLICKIII/CaMKIγが重要であること、この下流でRac GEFのSTEFによるRac活性化が関わることが示唆されている<ref name="ref73"><pubmed>17553424</pubmed></ref>。  


<br>
<br>
77行目: 77行目:
== シナプス形成とシナプス可塑性<br> ==
== シナプス形成とシナプス可塑性<br> ==


 中枢神経系の興奮性シナプスの多くは、棘突起(スパイン)と呼ばれる樹状突起にある微小突起上に形成される。スパインは、神経活動に依存した形態変化や形成・消失を示し、神経可塑性に深く関わる<ref name="ref94"><pubmed>12850432</pubmed></ref>。スパインはアクチン線維に富む構造体であることから<ref name="ref95"><pubmed>11052932</pubmed></ref> <ref name="ref96"><pubmed>22566410</pubmed></ref>、アクチン細胞骨格の主たる制御因子であるRho familyの関与に興味がもたれてきた。<br>初代培養神経細胞やスライス培養細胞では、スパインの形成・維持に対し、Racは促進的に、Rhoは抑制的に作用する<ref name="ref62" />。これに合致し、Rac GEFであるkalirin-7やTiam1はNMDA受容体と複合体を形成し、これらGEFの機能阻害によりスパインの密度が減少することも示されている<ref name="ref97"><pubmed>21530608</pubmed></ref>。Tiam1のスパインへの局在はPar3依存的であり、Par3の発現抑制ではTiam1の局在がスパインから樹状突起に移行し、異所性のフィロポディアがRac依存的に形成される<ref name="ref98"><pubmed>16474385</pubmed></ref>。一方、Par3と複合体を形成するPar6はp190RhoGAPによるRho不活性化を介してスパイン形成を促進することが示唆されている<ref name="ref99"><pubmed>18267090</pubmed></ref>。Cdc42もスパインの形成・維持に促進的であることが示されているが<ref name="ref100"><pubmed>12389031</pubmed></ref>、関与がないとする報告もある<ref name="ref101"><pubmed>11007543</pubmed></ref>。Cdc42には、C末端にイソプレニル化を受ける通常のアイソフォームとは異なり、パルミトイル化される脳特異的なalternative splicing isoformが存在する<ref name="ref102" />。パルミトイル化Cdc42はスパインに集積し、スパイン形成を促進することが示唆されている<ref name="ref102"><pubmed>19092927</pubmed></ref>。Cdc42のパルミトイル化は神経活動依存的に変化することも示されており、Cdc42によるスパイン密度の制御は状況により変化すると考えられる<ref name="ref102" />。<br> スパインの形態はシナプス可塑性に伴って大きく変化し、長期増強(long-term potentiation)ではスパインの増大が、長期抑圧(long-term depression)ではスパインの縮小が見られる<ref name="ref103"><pubmed>15190253</pubmed></ref> <ref name="ref104"><pubmed>15361876</pubmed></ref>。このスパインの形態変化はアクチン動態の変化を伴い、またアクチン細胞骨格依存的であることから、Rho familyの関与が調べられてきた。二光子顕微鏡を用いた海馬スライスのイメージングから、グルタミン酸受容体の活性化がスパインでのCdc42とRhoの活性化を誘導すること、活動依存的なスパインの増大にCdc42とRhoが共に重要であることが示された<ref name="ref105"><pubmed>21423166</pubmed></ref>。Cdc42の活性化はスパインに長期的に留まるのに対し、Rhoの活性化はスパインから樹状突起へと拡散する。この活性化のパターンと合致し、Cdc42の活性化はスパインの増大の維持に、Rhoの活性化は初期のスパインの増大に重要であることが示唆されている<ref name="ref105" />。活動依存的なスパイン増大におけるCdc42、Rhoの作用には、それぞれPAKとROCKが関与していることが示唆されている<ref name="ref105" />。Cofilinとミオシン活性化はシナプス可塑性に重要であることから、現在、PAKによるcofilin不活性化やROCKによるミオシン活性化がシナプス可塑性に関与する可能性が検討されている<ref name="ref96" />。Rhoエフェクターの一つCitronは後シナプス肥厚に集積し、PSD-95やNMDA受容体と複合体を形成する<ref name="ref106"><pubmed>9870943</pubmed></ref>。Citron欠損マウスではスパインの密度が減少するが<ref name="ref107"><pubmed>18309323</pubmed></ref>、その作用機序は不明である。<br> また、Rac1やRacエフェクターのWAVE1の遺伝子欠損マウスでも海馬での長期増強や記憶学習の障害が認められることから<ref name="ref108"><pubmed>12578964</pubmed></ref> <ref name="ref109"><pubmed>17215396</pubmed></ref>、活動依存的なスパイン増大にRacが関わる可能性が考えられる。これに合致し、Rac GEFであるkalirin-7はNMDA受容体活性化によるスパイン増大とAMPA受容体の表面提示に重要であるが示されている。NMDA受容体刺激はα-CaMKII依存的にkalirin-7をリン酸化し、Racの活性化を誘導する<ref name="ref110"><pubmed>18031682</pubmed></ref>。NMDA受容体刺激によるTiam1のリン酸化と活性化も報告されている<ref name="ref72" />。β-PIXによるCdc42とRacの活性化もスパインの形成や形態制御に重要な働きを担うが、β-PIXは足場タンパクGITを介してスパインに局在し、CaMKK-CaMKIαによるリン酸化により活性化される<ref name="ref111"><pubmed>18184567</pubmed></ref>。Rho特異的なGEFであるLfcも、NMDA受容体刺激によりスパインへ移行し、スパインの密度や形態の制御に関わると考えられている<ref name="ref112"><pubmed>15996550</pubmed></ref>。<br> エフリンによるスパイン形態の制御においてもRho familyは重要な役割を担う。Ephrin-B1によるEphB2刺激はRac GEFであるkalirin-7のスパインへの移行を促し、Rac-PAK経路を介してスパインを増大させることが示されている<ref name="ref113"><pubmed>12546821</pubmed></ref>。EphB活性化によるスパイン密度の増加にはRac GEFのTiam1の関与も示されている<ref name="ref114"><pubmed>17440041</pubmed></ref>。Cdc42とそのGEFであるintersectin-Lはスパイン形成に関わるが、Ephrin-B2刺激はintersectin-Lを介したCdc42活性化を誘導する<ref name="ref100" />。また、Ephrin-A1によるEphA4刺激はCdk5によるリン酸化を介してRho GEFのephexin1を活性化し、スパインの退縮とシナプス伝達の減弱を引き起こすことも示されている<ref name="ref115"><pubmed>17143272</pubmed></ref>。<br> 非症候性精神遅滞 (non-syndromic mental retardation) の多くはスパインの形態異常を伴う<ref name="ref116"><pubmed>11998687</pubmed></ref>。これに合致して、非症候性精神遅滞の原因遺伝子として、OPHN1 (Oligophrenin-1; Rho family GAP)、PAK3 (PAK3; Rac1/Cdc42エフェクター、Ser/Thr kinase)、ARHGEF6 (αPIX/Cool-2; Rac, Cdc42 GEF) など、数多くのRhoシグナル関連遺伝子が同定されてきた。Oligophrenin-1は前シナプス、後シナプスに共に存在し、グルタミン酸作動性シナプス伝達の促進<ref name="ref117"><pubmed>19487570</pubmed></ref>やシナプス小胞の制御に関わることが報告されている<ref name="ref118"><pubmed>19481455</pubmed></ref>。
 中枢神経系の興奮性シナプスの多くは、棘突起(スパイン)と呼ばれる樹状突起にある微小突起上に形成される。スパインは、神経活動に依存した形態変化や形成・消失を示し、神経可塑性に深く関わる<ref name="ref94"><pubmed>12850432</pubmed></ref>。スパインはアクチン線維に富む構造体であることから<ref name="ref95"><pubmed>11052932</pubmed></ref> <ref name="ref96"><pubmed>22566410</pubmed></ref>、アクチン細胞骨格の主たる制御因子であるRho familyの関与に興味がもたれてきた。<br>初代培養神経細胞やスライス培養細胞では、スパインの形成・維持に対し、Racは促進的に、Rhoは抑制的に作用する<ref name="ref62" />。これに合致し、Rac GEFであるkalirin-7やTiam1はNMDA受容体と複合体を形成し、これらGEFの機能阻害によりスパインの密度が減少することも示されている<ref name="ref97"><pubmed>21530608</pubmed></ref>。Tiam1のスパインへの局在はPar3依存的であり、Par3の発現抑制ではTiam1の局在がスパインから樹状突起に移行し、異所性のフィロポディアがRac依存的に形成される<ref name="ref98"><pubmed>16474385</pubmed></ref>。一方、Par3と複合体を形成するPar6はp190RhoGAPによるRho不活性化を介してスパイン形成を促進することが示唆されている<ref name="ref99"><pubmed>18267090</pubmed></ref>。Cdc42もスパインの形成・維持に促進的であることが示されているが<ref name="ref100"><pubmed>12389031</pubmed></ref>、関与がないとする報告もある<ref name="ref101"><pubmed>11007543</pubmed></ref>。Cdc42には、C末端にイソプレニル化を受ける通常のアイソフォームとは異なり、パルミトイル化される脳特異的なalternative splicing isoformが存在する<ref name="ref102" />。パルミトイル化Cdc42はスパインに集積し、スパイン形成を促進することが示唆されている<ref name="ref102"><pubmed>19092927</pubmed></ref>。Cdc42のパルミトイル化は神経活動依存的に変化することも示されており、Cdc42によるスパイン密度の制御は状況により変化すると考えられる<ref name="ref102" />。<br> スパインの形態はシナプス可塑性に伴って大きく変化し、長期増強(long-term potentiation)ではスパインの増大が、長期抑圧(long-term depression)ではスパインの縮小が見られる<ref name="ref103"><pubmed>15190253</pubmed></ref> <ref name="ref104"><pubmed>15361876</pubmed></ref>。このスパインの形態変化はアクチン動態の変化を伴い、またアクチン細胞骨格依存的であることから、Rho familyの関与が調べられてきた。二光子顕微鏡を用いた海馬スライスのイメージングから、グルタミン酸受容体の活性化がスパインでのCdc42とRhoの活性化を誘導すること、活動依存的なスパインの増大にCdc42とRhoが共に重要であることが示された<ref name="ref105"><pubmed>21423166</pubmed></ref>。Cdc42の活性化はスパインに長期的に留まるのに対し、Rhoの活性化はスパインから樹状突起へと拡散する。この活性化のパターンと合致し、Cdc42の活性化はスパインの増大の維持に、Rhoの活性化は初期のスパインの増大に重要であることが示唆されている<ref name="ref105" />。活動依存的なスパイン増大におけるCdc42、Rhoの作用には、それぞれPAKとROCKが関与していることが示唆されている<ref name="ref105" />。Cofilinとミオシン活性化はシナプス可塑性に重要であることから、現在、PAKによるcofilin不活性化やROCKによるミオシン活性化がシナプス可塑性に関与する可能性が検討されている<ref name="ref96" />。Rhoエフェクターの一つCitronは後シナプス肥厚に集積し、PSD-95やNMDA受容体と複合体を形成する<ref name="ref106"><pubmed>9870943</pubmed></ref>。Citron欠損マウスではスパインの密度が減少するが<ref name="ref107"><pubmed>18309323</pubmed></ref>、その作用機序は不明である。<br> また、Rac1やRacエフェクターのWAVE1の遺伝子欠損マウスでも海馬での長期増強や記憶学習の障害が認められることから<ref name="ref108"><pubmed>12578964</pubmed></ref> <ref name="ref109"><pubmed>17215396</pubmed></ref>、活動依存的なスパイン増大にRacが関わる可能性が考えられる。これに合致し、Rac GEFであるkalirin-7はNMDA受容体活性化によるスパイン増大とAMPA受容体の表面提示に重要であるが示されている。NMDA受容体刺激はα-CaMKII依存的にkalirin-7をリン酸化し、Racの活性化を誘導する<ref name="ref110"><pubmed>18031682</pubmed></ref>。NMDA受容体刺激によるTiam1のリン酸化と活性化も報告されている<ref name="ref72" />。β-PIXによるCdc42とRacの活性化もスパインの形成や形態制御に重要な働きを担うが、β-PIXは足場タンパクGITを介してスパインに局在し、CaMKK-CaMKIαによるリン酸化により活性化される<ref name="ref111"><pubmed>18184567</pubmed></ref>。Rho特異的なGEFであるLfcも、NMDA受容体刺激によりスパインへ移行し、スパインの密度や形態の制御に関わると考えられている<ref name="ref112"><pubmed>15996550</pubmed></ref>。<br> エフリンによるスパイン形態の制御においてもRho familyは重要な役割を担う。Ephrin-B1によるEphB2刺激はRac GEFであるkalirin-7のスパインへの移行を促し、Rac-PAK経路を介してスパインを増大させることが示されている<ref name="ref113"><pubmed>12546821</pubmed></ref>。EphB活性化によるスパイン密度の増加にはRac GEFのTiam1の関与も示されている<ref name="ref114"><pubmed>17440041</pubmed></ref>。Cdc42とそのGEFであるintersectin-Lはスパイン形成に関わるが、Ephrin-B2刺激はintersectin-Lを介したCdc42活性化を誘導する<ref name="ref100" />。また、Ephrin-A1によるEphA4刺激はCdk5によるリン酸化を介してRho GEFのephexin1を活性化し、スパインの退縮とシナプス伝達の減弱を引き起こすことも示されている<ref name="ref115"><pubmed>17143272</pubmed></ref>。<br> 非症候性精神遅滞 (non-syndromic mental retardation) の多くはスパインの形態異常を伴う<ref name="ref116"><pubmed>11998687</pubmed></ref>。これに合致して、非症候性精神遅滞の原因遺伝子として、OPHN1 (Oligophrenin-1; Rho family GAP)、PAK3 (PAK3; Rac1/Cdc42エフェクター、Ser/Thr kinase)、ARHGEF6 (αPIX/Cool-2; Rac, Cdc42 GEF) など、数多くのRhoシグナル関連遺伝子が同定されてきた。Oligophrenin-1は前シナプス、後シナプスに共に存在し、グルタミン酸作動性シナプス伝達の促進<ref name="ref117"><pubmed>19487570</pubmed></ref>やシナプス小胞の制御に関わることが報告されている<ref name="ref118"><pubmed>19481455</pubmed></ref>。  
 


<br>


== 参考文献  ==
== 参考文献  ==
29

回編集

案内メニュー