16,040
回編集
細編集の要約なし |
細 (→神経突起の伸展) |
||
196行目: | 196行目: | ||
=== 神経突起の伸展 === | === 神経突起の伸展 === | ||
神経突起の形成と伸長は、突起先端の成長円錐でのアクチン細胞骨格の再編成と、それに引き続く微小管の配向、安定化を必要とする。PC12やN1E-115など神経様細胞株を用いた解析から、RhoAの活性化は突起伸展を抑制し、Rac及びCdc42の活性化は突起伸展を促進することが示された<ref name="ref60"><pubmed>10594018</pubmed></ref> <ref name="ref61"><pubmed>11279039</pubmed></ref>。[[初代培養神経]]細胞においても、Rho、Rac、Cdc42は同様の作用を示す<ref name="ref62"><pubmed>15630019</pubmed></ref>。RhoAによる突起伸展抑制にはROCKが重要な働きを担う<ref name="ref62" />。アメフラシの成長円錐では、RhoA-ROCKの活性化は[[成長円錐]]におけるアクトミオシン束を増強することが報告されている<ref name="ref63"><pubmed>14659092</pubmed></ref>。また、初代培養小脳顆粒細胞において、RhoA-ROCK経路による突起伸展抑制には、LIM kinaseによるアクチン脱重合抑制が関与することも示唆されている<ref name="ref64"><pubmed>10839361</pubmed></ref>。後根神経節細胞の突起伸展では、ROCKは[[軸索]]伸展に不可欠な[[CRMP|CRMP-2]]をリン酸化して、その機能を抑制する<ref name="ref65"><pubmed>16260611</pubmed></ref> | 神経突起の形成と伸長は、突起先端の成長円錐でのアクチン細胞骨格の再編成と、それに引き続く微小管の配向、安定化を必要とする。PC12やN1E-115など神経様細胞株を用いた解析から、RhoAの活性化は突起伸展を抑制し、Rac及びCdc42の活性化は突起伸展を促進することが示された<ref name="ref60"><pubmed>10594018</pubmed></ref> <ref name="ref61"><pubmed>11279039</pubmed></ref>。[[初代培養神経]]細胞においても、Rho、Rac、Cdc42は同様の作用を示す<ref name="ref62"><pubmed>15630019</pubmed></ref>。RhoAによる突起伸展抑制にはROCKが重要な働きを担う<ref name="ref62" />。アメフラシの成長円錐では、RhoA-ROCKの活性化は[[成長円錐]]におけるアクトミオシン束を増強することが報告されている<ref name="ref63"><pubmed>14659092</pubmed></ref>。また、初代培養小脳顆粒細胞において、RhoA-ROCK経路による突起伸展抑制には、LIM kinaseによるアクチン脱重合抑制が関与することも示唆されている<ref name="ref64"><pubmed>10839361</pubmed></ref>。後根神経節細胞の突起伸展では、ROCKは[[軸索]]伸展に不可欠な[[CRMP|CRMP-2]]をリン酸化して、その機能を抑制する<ref name="ref65"><pubmed>16260611</pubmed></ref>。一方、初代培養小脳顆粒細胞や海馬[[スライス培養]]を用いた解析から、[[SDF-1α]]投与による突起伸展促進におけるmDiaの重要性が示唆されているが<ref name="ref66"><pubmed>12707308</pubmed></ref> <ref name="ref67"><pubmed>18701697</pubmed></ref>、生理的な突起伸展制御におけるmDiaの役割は不明である。Racによる突起伸展促進作用には、WAVE-Arp2/3による成長円錐のラメリポディア形成の役割が小脳顆粒細胞を用いた実験から示唆されている<ref name="ref34" />。PC-12細胞と海馬初代培養神経細胞を用いた解析から、Cdc42による神経突起伸展にはN-WASP-Arp2/3が関与することが示されている<ref name="ref68"><pubmed>10766829</pubmed></ref>。 | ||
上記の研究は主に軸索を対象として行われてきたが、同様のRhoファミリーの役割が[[樹状突起]]の形成においても示されている<ref name="ref62" />。すなわち、RhoA-ROCKの活性化は樹状突起の形成を抑制し、すでに形成された樹状突起を単純化させる。一方、Racは樹状突起の形成に促進的に働く。Cdc42も樹状突起の形成に促進的に働くことが報告されてはいるが、抑制に働くとする報告もある。 | 上記の研究は主に軸索を対象として行われてきたが、同様のRhoファミリーの役割が[[樹状突起]]の形成においても示されている<ref name="ref62" />。すなわち、RhoA-ROCKの活性化は樹状突起の形成を抑制し、すでに形成された樹状突起を単純化させる。一方、Racは樹状突起の形成に促進的に働く。Cdc42も樹状突起の形成に促進的に働くことが報告されてはいるが、抑制に働くとする報告もある。 | ||
202行目: | 202行目: | ||
細胞外刺激による神経突起伸展におけるRhoファミリーの制御機構についても研究が進んでいる。神経突起伸展に伴うRhoAの活性抑制には、別のRhoファミリータンパク質であるRndが重要な働きを持つことが示されている。例えばRnd3/RhoEの遺伝子欠損マウス由来の海馬初代培養神経細胞では、RhoA-ROCKの活性亢進により神経突起の数や長さが減少する<ref name="ref69"><pubmed>22428561</pubmed></ref>。PC-12細胞では、FGF刺激による神経突起伸展促進におけるRnd1の関与も示されている<ref name="ref70"><pubmed>11095956</pubmed></ref>。Rnd1とRnd3は[[P190RhoGAP]]によりRhoAの不活性化を促すことから<ref name="ref13" />、この作用が突起伸展を促進する可能性が考えられる。神経突起伸展に伴うRacの活性化には、別のRhoファミリータンパク質であるRhoGの関与が報告されている<ref name="ref71"><pubmed>12879077</pubmed></ref>。RhoGは足場タンパク質[[Elmo]]とRac GEFの[[Dock180]]と三量体を形成しているが、[[NGF受容体]]の活性化はTrioを介しRhoGを活性化し、これがElmo-Dock180を介したRac活性化を促す<ref name="ref71" />。 | 細胞外刺激による神経突起伸展におけるRhoファミリーの制御機構についても研究が進んでいる。神経突起伸展に伴うRhoAの活性抑制には、別のRhoファミリータンパク質であるRndが重要な働きを持つことが示されている。例えばRnd3/RhoEの遺伝子欠損マウス由来の海馬初代培養神経細胞では、RhoA-ROCKの活性亢進により神経突起の数や長さが減少する<ref name="ref69"><pubmed>22428561</pubmed></ref>。PC-12細胞では、FGF刺激による神経突起伸展促進におけるRnd1の関与も示されている<ref name="ref70"><pubmed>11095956</pubmed></ref>。Rnd1とRnd3は[[P190RhoGAP]]によりRhoAの不活性化を促すことから<ref name="ref13" />、この作用が突起伸展を促進する可能性が考えられる。神経突起伸展に伴うRacの活性化には、別のRhoファミリータンパク質であるRhoGの関与が報告されている<ref name="ref71"><pubmed>12879077</pubmed></ref>。RhoGは足場タンパク質[[Elmo]]とRac GEFの[[Dock180]]と三量体を形成しているが、[[NGF受容体]]の活性化はTrioを介しRhoGを活性化し、これがElmo-Dock180を介したRac活性化を促す<ref name="ref71" />。 | ||
神経活動は[[NMDA受容体]]活性化による樹状突起伸展を促すが、この作用にはRhoAの抑制とRac、Cdc42の活性化の関与が示唆されている。海馬初代培養神経細胞では、NMDA受容体活性化が細胞内[[Ca2+]]依存的に[[Tiam1]]をリン酸化し、これがRacの活性化を介して樹状突起伸展を促進することが示唆されている<ref name="ref72"><pubmed>15721239</pubmed></ref>。また、海馬初代培養神経細胞では、[[BDNF]]による樹状突起伸展の促進に[[CLICK]]III/[[CaMKIγ]]が重要であること、この下流でRacGEFの[[STEF]]によるRac活性化が関わることが示唆されている<ref name="ref73"><pubmed>17553424</pubmed></ref>。 | 神経活動は[[NMDA受容体]]活性化による樹状突起伸展を促すが、この作用にはRhoAの抑制とRac、Cdc42の活性化の関与が示唆されている。海馬初代培養神経細胞では、NMDA受容体活性化が細胞内[[Ca2+]]依存的に[[Tiam1]]をリン酸化し、これがRacの活性化を介して樹状突起伸展を促進することが示唆されている<ref name="ref72"><pubmed>15721239</pubmed></ref>。また、海馬初代培養神経細胞では、[[BDNF]]による樹状突起伸展の促進に[[CLICK]]III/[[CaMKIγ]]が重要であること、この下流でRacGEFの[[STEF]]によるRac活性化が関わることが示唆されている<ref name="ref73"><pubmed>17553424</pubmed></ref>。 | ||
=== 神経突起の極性形成 === | === 神経突起の極性形成 === |