16,040
回編集
細 (→手技) |
|||
48行目: | 48行目: | ||
:陽圧の解除により、細胞膜が電極先端へ接着させる。吸引により内部に軽い陰圧をかけることで、細胞膜とピペット先端を密着させ、ギガシール(1GΩ以上の抵抗)を形成する。矩形波電流はゼロに近くなり、電流ノイズも小さくさる(図1C)。このギガシールにより、漏れ電流(leak current)が非常に小さくなり、イオンチャネルの開閉による小さな電流を測定することが可能となる。<br>ギガシール形成後、電極による浮遊容量Cpをアンプを介して補正する(図1D)。 | :陽圧の解除により、細胞膜が電極先端へ接着させる。吸引により内部に軽い陰圧をかけることで、細胞膜とピペット先端を密着させ、ギガシール(1GΩ以上の抵抗)を形成する。矩形波電流はゼロに近くなり、電流ノイズも小さくさる(図1C)。このギガシールにより、漏れ電流(leak current)が非常に小さくなり、イオンチャネルの開閉による小さな電流を測定することが可能となる。<br>ギガシール形成後、電極による浮遊容量Cpをアンプを介して補正する(図1D)。 | ||
;'''ホールセル形成''' | ;'''ホールセル形成''' | ||
:さらに陰圧をかけることで、細胞膜を穿孔し、ホールセルの状態にする(図1E)。矩形波電流は直列抵抗に応じた容量性サージ電流(capatitative surge current)としてモニターされる。この振幅値は直列抵抗に反比例することから、容量性サージ電流とピペット電位Vpから直列抵抗 (series resistance, Rs) | :さらに陰圧をかけることで、細胞膜を穿孔し、ホールセルの状態にする(図1E)。矩形波電流は直列抵抗に応じた容量性サージ電流(capatitative surge current)としてモニターされる。この振幅値は直列抵抗に反比例することから、容量性サージ電流とピペット電位Vpから直列抵抗 (series resistance, Rs)の値を算出することができる(図1E)。また、膜抵抗Rm(入力抵抗)も算出することができる。 | ||
膜電位Vmはピペット電位Vpよりも直列抵抗によってIp・Rs分の電圧降下が見られる。膜電位固定下で、細胞が小さい場合、電流Ipは小さいため大きな電圧降下は認められないが、細胞が大きい場合は、ピペット電流Ipは大きくなる為、膜電位Vmとピペット電位Vpの差が大きくなり、膜電位の制御が正しく行われなくなる。その為、大きな細胞の膜電位を制御するには、直列抵抗Rsを小さくする必要がある。あるいは電気的に直列抵抗Rsの補正(Series resistance | Rsは膜容量に対して直列に配置される抵抗成分であり、[[電極抵抗]]Rpと[[アクセス抵抗]]Raccess(電極と細胞の間の抵抗成分)の和である。Rsは電極の形状に依存しており、電極の先端径が大きく、テーパーが短い(電極先端まで太く、急に細くなる)ものは、Rsは小さくなる。 | ||
膜電位Vmはピペット電位Vpよりも直列抵抗によってIp・Rs分の電圧降下が見られる。膜電位固定下で、細胞が小さい場合、電流Ipは小さいため大きな電圧降下は認められないが、細胞が大きい場合は、ピペット電流Ipは大きくなる為、膜電位Vmとピペット電位Vpの差が大きくなり、膜電位の制御が正しく行われなくなる。その為、大きな細胞の膜電位を制御するには、直列抵抗Rsを小さくする必要がある。あるいは電気的に直列抵抗Rsの補正(Series resistance compensation)をアンプを介して行う(図1F)。 | |||
また、膜容量Cmに荷電する電流が大きくなり、時定数の早いイオンチャネルなどの電流応答を正確に記録できないため、膜容量Cmの補正(membrane capacitance compensation)を行う。 | |||
== 種々の方法 == | == 種々の方法 == |