9,444
回編集
細編集の要約なし |
細編集の要約なし |
||
177行目: | 177行目: | ||
[[image:一酸化窒素(脳科学辞典).jpg|thumb|240px|'''図3.シナプス可塑性の調節因子としてのNO'''<br>シナプス前部から伝達物質と共に放出される場合(A)やシナプス後部からシナプス伝達の方向とは逆に放出される場合(B)や、シナプス近傍の抑制性のインターニューロンから放出される場合(C)など、様々なケースがある。]] | [[image:一酸化窒素(脳科学辞典).jpg|thumb|240px|'''図3.シナプス可塑性の調節因子としてのNO'''<br>シナプス前部から伝達物質と共に放出される場合(A)やシナプス後部からシナプス伝達の方向とは逆に放出される場合(B)や、シナプス近傍の抑制性のインターニューロンから放出される場合(C)など、様々なケースがある。]] | ||
NOの脳における重要な機能として[[シナプス]]可塑性の調節因子としての働きが挙げられる<ref name=ref2><pubmed>24198758</pubmed></ref>。NOが関与するシナプス可塑性としては[[小脳]]の[[長期抑圧]]、[[海馬]]の[[長期増強]]、[[大脳皮質]] | NOの脳における重要な機能として[[シナプス]]可塑性の調節因子としての働きが挙げられる<ref name=ref2><pubmed>24198758</pubmed></ref>。NOが関与するシナプス可塑性としては[[小脳]]の[[長期抑圧]]、[[海馬]]の[[長期増強]]、[[大脳皮質]]の長期増強などがある。いずれの場合も、特定の膜に閉ざされたコンパートメントから、別の膜に閉ざされたコンパートメントに、NOのガス拡散特性によって情報を伝達しているという点に特徴がある(図3)。NOの放出部位はシナプス前部、後部、[[抑制性介在神経]]と多彩であり、NOはシナプスの可塑性に必須な因子というより、状況に応じて誘発を促進する調節因子であるという点が共通している。 | ||
====小脳長期抑圧現象==== | ====小脳長期抑圧現象==== | ||
小脳皮質からの唯一の出力細胞である[[プルキンエ細胞]]は、[[平行線維]]と[[登上線維]]からシナプス入力を受け。この二つが同期して起きたときに平行線維-プルキンエ細胞間シナプスが長期[[抑圧]]を起こす。小脳の長期抑圧は、ある種の運動学習の基礎メカニズムであると考えられている。小脳の長期抑圧は、シナプス後部であるプルキンエ細胞において生ずる。一方、平行線維を出す[[顆粒細胞]]はnNOSを多量に含み、NOは平行線維から放出されてプルキンエ細胞に、あるいは平行線維自身に作用すると考えられている。培養プルキンエ細胞を用た単純な実験系ではNOの関与なしに[[グルタミン酸]]応答の抑圧が起きるが、小脳長期抑圧を必要とする運動学習はNO依存性を示す、つまり標本による違いはあるものの、少なくとも個体レベルにおいて[[運動学習]]はNOによって促進的な修飾作用を受けると考えられる。 | 小脳皮質からの唯一の出力細胞である[[プルキンエ細胞]]は、[[平行線維]]と[[登上線維]]からシナプス入力を受け。この二つが同期して起きたときに平行線維-プルキンエ細胞間シナプスが長期[[抑圧]]を起こす。小脳の長期抑圧は、ある種の運動学習の基礎メカニズムであると考えられている。小脳の長期抑圧は、シナプス後部であるプルキンエ細胞において生ずる。一方、平行線維を出す[[顆粒細胞]]はnNOSを多量に含み、NOは平行線維から放出されてプルキンエ細胞に、あるいは平行線維自身に作用すると考えられている。培養プルキンエ細胞を用た単純な実験系ではNOの関与なしに[[グルタミン酸]]応答の抑圧が起きるが、小脳長期抑圧を必要とする運動学習はNO依存性を示す、つまり標本による違いはあるものの、少なくとも個体レベルにおいて[[運動学習]]はNOによって促進的な修飾作用を受けると考えられる。 |