66
回編集
Hanakohayashi (トーク | 投稿記録) 細編集の要約なし |
Hanakohayashi (トーク | 投稿記録) 細 (→機能) |
||
133行目: | 133行目: | ||
細胞間接着におけるβ–カテニンの役割は、カドヘリンとα–カテニンとの連結にある<ref><pubmed><pubmed> 22617422 </pubmed></ref>。α–カテニンの結合は生化学的に確認されており、E–カドヘリンとともにアドへレンス・ジャンクションに局在するという細胞レベルの知見からも支持されている<ref><pubmed> 15112230 </pubmed></ref>。F9細胞ではβ–カテニンをノックアウトしてもプラコグロビン(γ–カテニンとも呼ばれる)の発現が増加し、カドヘリンによる接着能は維持されるが、プラコグロビンもあわせてノックアウトするとその接着能は失われることが示されている<ref><pubmed> 16357441 </pubmed></ref>。しかし、カドヘリンが発現していない細胞に、カドヘリンとα–カテニンとを融合したタンパク質を発現させれば、β–カテニンが存在しなくてもカドヘリンの機能は発揮される<ref><pubmed> 7929566 </pubmed></ref>。 これらは、細胞間接着においてプラコグロビンがβ–カテニンの機能を補完する役割を担っており、またβ–カテニンの機能は、α–カテニンをカドヘリンに結合させることであることを示している。細胞接着においてプラコグロビンの特徴はデスモソ-ムカドヘリンと細胞骨格の一つである中間径フィラメントの結合タンパクであるプラモプラーキンの両方と同時に結合し、デスモソームの構造体として機能する点である。プラコグロビンのC末端領域の欠損した培養細胞では、細胞のラテラル面でのデスモソームの融合が見られ、結果としてデスモソームのサイズの増大が起こる。また、プラコグロビンは、アドへレンス・ジャンクションとデスモソーム間の分子のクロストークの制御に寄与していることが示唆されている。プラコグロビンのノックアウトマウスの心筋組織ではアドへレンス・ジャンクションの構成因子とデスモソームの構成因子とが混在してラテラル面に局在するようになってしまう<ref><pubmed> 19262118 </pubmed></ref>。 | 細胞間接着におけるβ–カテニンの役割は、カドヘリンとα–カテニンとの連結にある<ref><pubmed><pubmed> 22617422 </pubmed></ref>。α–カテニンの結合は生化学的に確認されており、E–カドヘリンとともにアドへレンス・ジャンクションに局在するという細胞レベルの知見からも支持されている<ref><pubmed> 15112230 </pubmed></ref>。F9細胞ではβ–カテニンをノックアウトしてもプラコグロビン(γ–カテニンとも呼ばれる)の発現が増加し、カドヘリンによる接着能は維持されるが、プラコグロビンもあわせてノックアウトするとその接着能は失われることが示されている<ref><pubmed> 16357441 </pubmed></ref>。しかし、カドヘリンが発現していない細胞に、カドヘリンとα–カテニンとを融合したタンパク質を発現させれば、β–カテニンが存在しなくてもカドヘリンの機能は発揮される<ref><pubmed> 7929566 </pubmed></ref>。 これらは、細胞間接着においてプラコグロビンがβ–カテニンの機能を補完する役割を担っており、またβ–カテニンの機能は、α–カテニンをカドヘリンに結合させることであることを示している。細胞接着においてプラコグロビンの特徴はデスモソ-ムカドヘリンと細胞骨格の一つである中間径フィラメントの結合タンパクであるプラモプラーキンの両方と同時に結合し、デスモソームの構造体として機能する点である。プラコグロビンのC末端領域の欠損した培養細胞では、細胞のラテラル面でのデスモソームの融合が見られ、結果としてデスモソームのサイズの増大が起こる。また、プラコグロビンは、アドへレンス・ジャンクションとデスモソーム間の分子のクロストークの制御に寄与していることが示唆されている。プラコグロビンのノックアウトマウスの心筋組織ではアドへレンス・ジャンクションの構成因子とデスモソームの構成因子とが混在してラテラル面に局在するようになってしまう<ref><pubmed> 19262118 </pubmed></ref>。 | ||
β–カテニンは、発生における遺伝子発現の制御にも重要な役割がある。Wntシグナルがない状態では、細胞質のβ–カテニン(カドヘリン・カテニン複合体中のものとは別である)はGSK3βによりリン酸化され、それを標的としたユビキチン化により、プロテアソームによるタンパク質分解をうけることで、その量が低く保たれている。WntシグナルがやってくればGSK3βによるリン酸化が抑制され、β–カテニンは核内へ移行し、TCF/LEFと複合体を形成し、細胞周期関連因子や体軸決定因子などの標的遺伝子を活性化する<ref><pubmed> 22617422 </pubmed></ref>。これは、ウニの発生を初めとし無脊椎動物、脊椎動物両方において報告されている<ref><pubmed> 22617422 </pubmed></ref>。神経系においても、シナプス形成と可塑性や神経幹細胞の未分化状態の維持など多岐にわたる寄与が報告されている<ref | β–カテニンは、発生における遺伝子発現の制御にも重要な役割がある。Wntシグナルがない状態では、細胞質のβ–カテニン(カドヘリン・カテニン複合体中のものとは別である)はGSK3βによりリン酸化され、それを標的としたユビキチン化により、プロテアソームによるタンパク質分解をうけることで、その量が低く保たれている。WntシグナルがやってくればGSK3βによるリン酸化が抑制され、β–カテニンは核内へ移行し、TCF/LEFと複合体を形成し、細胞周期関連因子や体軸決定因子などの標的遺伝子を活性化する<ref><pubmed> 22617422 </pubmed></ref>。これは、ウニの発生を初めとし無脊椎動物、脊椎動物両方において報告されている<ref><pubmed> 22617422 </pubmed></ref>。神経系においても、シナプス形成と可塑性や神経幹細胞の未分化状態の維持など多岐にわたる寄与が報告されている<ref>'''Elkouby, Y. M., Frank, D. '''<br>Wnt/beta-Catenin Signaling in Vertebrate Posterior Neural Development<br>''Developmental Biology (San Rafael (CA))'':2010</ref><ref><pubmed> 23377854 </pubmed></ref>。また、プロコグロビンも先に挙げたTCF/LEFと結合でき、核内への局在がみられる状況では、Wnt/β–カテニンシグナル伝達の抑制が同時にみられていることから、実際にはプロコグロビンはβ–カテニンと相互排他的にTCF/LEFへ結合しうり、その結果としてWnt/β–カテニンシグナル伝達の制御を実現していると解釈できる。 | ||
==p120–カテニン== | ==p120–カテニン== |
回編集