「シナプス後肥厚」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
編集の要約なし
 
11行目: 11行目:


{{box
{{box
|text= シナプス後肥厚とは[[シナプス]]膜直下、細胞質側に存在する多数の[[蛋白質]]の複合体である。当初、[[電子顕微鏡]]によるシナプスの観察から、シナプス直下のみ電子線を通しにくく、[[細胞膜]]が肥厚してみれるからこのように名付けられた。シナプス膜直下に有ることから、シナプスの構造や機能に密接な関わりがあることが推定され、多くの研究がなされてきた。[[wikipedea:ja:生化学|生化学]]的に単離する事も可能で、シナプスの構造蛋白質、調節蛋白質など数百種類に及ぶ分子を含む事が判っている。
|text= シナプス後肥厚とは[[シナプス]]膜直下、細胞質側に存在する多数の[[タンパク質]]の複合体である。当初、[[電子顕微鏡]]によるシナプスの観察から、シナプス直下のみ電子線を通しにくく、[[細胞膜]]が肥厚してみれるからこのように名付けられた。シナプス膜直下に有ることから、シナプスの構造や機能に密接な関わりがあることが推定され、多くの研究がなされてきた。[[wikipedea:ja:生化学|生化学]]的に単離する事も可能で、シナプスの構造タンパク質、調節タンパク質など数百種類に及ぶ分子を含む事が判っている。
}}
}}
[[ファイル:Spine EM.png|thumb|right|'''電子顕微鏡によるPSD画像'''<br>この例は穿孔PSDである。矢頭間:PSD、S:樹状突起棘、AT:軸索終止、a:星状膠細胞、矢印:小胞体、スケールバー:200 nm。ヒト大脳皮質。[http://synapses.clm.utexas.edu/pubs/pubs.stm Synapseweb]より。許可を得て転載。]]
[[ファイル:Spine EM.png|thumb|right|'''電子顕微鏡によるPSD画像'''<br>この例は穿孔PSDである。矢頭間:PSD、S:樹状突起棘、AT:軸索終止、a:星状膠細胞、矢印:小胞体、スケールバー:200 nm。ヒト大脳皮質。[http://synapses.clm.utexas.edu/pubs/pubs.stm Synapseweb]より。許可を得て転載。]]
28行目: 28行目:
[[ファイル:PSD_proteins.png|thumb|right|'''PSD画分のSDS-PAGE像'''<br>Major 51000はCaMKIIである事が後に判明する。Siekevitzらによる<ref name=Carlin_J_Cell_Biol><pubmed>7410481</pubmed></ref>。許可を得て転載。]] de RobertisらはPSDが[[wikipedia:ja:界面活性剤|界面活性剤]]に耐性があることを利用し、PSDを生化学的に単離することに成功した。今日では、Siekevitzらによる界面活性剤に[[wikipedia:Sucrose_gradient_centrifugation|非連続蔗糖密度勾配遠心法]]を組み合わせた方法がよく用いられている<ref name=Carlin_J_Cell_Biol><pubmed>7410481</pubmed></ref>。単離したPSDの電子顕微鏡像は組織中のPSDと大きさや形状がよく似ており、直径が平均360 nm(面積で0.1 µm<sup>2</sup>)、分子量が1.10±0.36 GDaであった<ref><pubmed>16061821</pubmed></ref>。走査型電子顕微鏡観察では、不定形の網目状の構造が認められおり、その構造がPSDを形作る構成基盤である可能性がある<ref name=petersen_j_neurosci><pubmed>14657186</pubmed></ref>。  
[[ファイル:PSD_proteins.png|thumb|right|'''PSD画分のSDS-PAGE像'''<br>Major 51000はCaMKIIである事が後に判明する。Siekevitzらによる<ref name=Carlin_J_Cell_Biol><pubmed>7410481</pubmed></ref>。許可を得て転載。]] de RobertisらはPSDが[[wikipedia:ja:界面活性剤|界面活性剤]]に耐性があることを利用し、PSDを生化学的に単離することに成功した。今日では、Siekevitzらによる界面活性剤に[[wikipedia:Sucrose_gradient_centrifugation|非連続蔗糖密度勾配遠心法]]を組み合わせた方法がよく用いられている<ref name=Carlin_J_Cell_Biol><pubmed>7410481</pubmed></ref>。単離したPSDの電子顕微鏡像は組織中のPSDと大きさや形状がよく似ており、直径が平均360 nm(面積で0.1 µm<sup>2</sup>)、分子量が1.10±0.36 GDaであった<ref><pubmed>16061821</pubmed></ref>。走査型電子顕微鏡観察では、不定形の網目状の構造が認められおり、その構造がPSDを形作る構成基盤である可能性がある<ref name=petersen_j_neurosci><pubmed>14657186</pubmed></ref>。  


 これにより、PSDを構成する分子を同定することも可能となった。 順により強い界面活性剤処理を行うことにより、PSD I、II、IIIとしてPSDに強固に結合している分子を分別していくことも可能である。 ただし、標品には通常シナプス後部にはあまり存在しない分子(例えば[[塩基性ミエリン蛋白質]])も混入することも知られており、取れてきた標品の中に含まれている分子が本当にPSD由来であるかは、別に[[免疫染色]]などで確認する必要が有る。  
 これにより、PSDを構成する分子を同定することも可能となった。 順により強い界面活性剤処理を行うことにより、PSD I、II、IIIとしてPSDに強固に結合している分子を分別していくことも可能である。 ただし、標品には通常シナプス後部にはあまり存在しない分子(例えば[[塩基性ミエリンタンパク質]])も混入することも知られており、取れてきた標品の中に含まれている分子が本当にPSD由来であるかは、別に[[免疫染色]]などで確認する必要が有る。  


{| class="wikitable" style="float:left; border: 1px solid darkgray;"
{| class="wikitable" style="float:left; border: 1px solid darkgray;"
|
|
{| class="wikitable" style="border: 1px solid darkgray;" width="200" cellpadding="1" cellspacing="1";
{| class="wikitable" style="border: 1px solid darkgray;" width="200" cellpadding="1" cellspacing="1";
|+ align=bottom |'''1個のPSDあたりに存在する蛋白質分子数'''<br>*PSD-95、[[SAP97]]、[[SAP102]]、[[PSD-93]]を含めた[[MAGUKs]]全体  
|+ align=bottom |'''1個のPSDあたりに存在するタンパク質分子数'''<br>*PSD-95、[[SAP97]]、[[SAP102]]、[[PSD-93]]を含めた[[MAGUKs]]全体  
|-
|-
! scope="col" |  
! scope="col" |  
84行目: 84行目:
|}
|}
|}
|}
[[ファイル:PSD_proteins2.png|thumb|right|'''PSD蛋白質'''<ref name=sheng_ann_rev_biochem><pubmed> 17243894 </pubmed></ref><ref name=peng_mol_cell_proteomics><pubmed>15020595</pubmed></ref><br>Reprinted, with permission, from the Annual Review of Biochemistry, Volume 76 © 2007 by Annual Reviews www.annualreviews.org]]
[[ファイル:PSD_proteins2.png|thumb|right|'''PSDタンパク質'''<ref name=sheng_ann_rev_biochem><pubmed> 17243894 </pubmed></ref><ref name=peng_mol_cell_proteomics><pubmed>15020595</pubmed></ref><br>Reprinted, with permission, from the Annual Review of Biochemistry, Volume 76 © 2007 by Annual Reviews www.annualreviews.org]]
[[ファイル:PSD proteins.jpg|thumb|right|'''PSD蛋白質'''<ref name=sheng_ann_rev_biochem /><br>Reprinted, with permission, from the Annual Review of Biochemistry, Volume 76 © 2007 by Annual Reviews www.annualreviews.org]]
[[ファイル:PSD proteins.jpg|thumb|right|'''PSDタンパク質'''<ref name=sheng_ann_rev_biochem /><br>Reprinted, with permission, from the Annual Review of Biochemistry, Volume 76 © 2007 by Annual Reviews www.annualreviews.org]]
 Kennedyらは、PSD分画に再現性よく多く認められる約45kDの蛋白質が、[[Ca2+/calmodulin依存性タンパク質キナーゼ|Ca<sup>2+</sup>/calmodulin依存性タンパク質キナーゼ]](CaMKII)&alpha;である事を見いだした<ref><pubmed> 6580651 </pubmed></ref>。この量は他の蛋白質と比べても多いが、CaMKIIはサンプル調整時の[[虚血]]によりPSDに移行することが知られており<ref><pubmed> 7931307 </pubmed></ref>、それによる影響で過大評価されている可能性がある。それでもなお最も多い蛋白質の一つであることには間違えがない。CaMKIIは他の情報伝達分子に比べ、数十倍以上多く、これはCaMKIIが単に情報伝達分子であるだけではなく、PSDに於ける構造因子であることも示唆する。実際に岡本らはCaMKIIβがアクチンを束化する活性があることを見いだしている<ref><pubmed> 17404223 </pubmed></ref>。
 Kennedyらは、PSD分画に再現性よく多く認められる約45kDのタンパク質が、[[Ca2+/calmodulin依存性タンパク質キナーゼ|Ca<sup>2+</sup>/calmodulin依存性タンパク質キナーゼ]](CaMKII)&alpha;である事を見いだした<ref><pubmed> 6580651 </pubmed></ref>。この量は他のタンパク質と比べても多いが、CaMKIIはサンプル調整時の[[虚血]]によりPSDに移行することが知られており<ref><pubmed> 7931307 </pubmed></ref>、それによる影響で過大評価されている可能性がある。それでもなお最も多いタンパク質の一つであることには間違えがない。CaMKIIは他の情報伝達分子に比べ、数十倍以上多く、これはCaMKIIが単に情報伝達分子であるだけではなく、PSDに於ける構造因子であることも示唆する。実際に岡本らはCaMKIIβがアクチンを束化する活性があることを見いだしている<ref><pubmed> 17404223 </pubmed></ref>。


 また、Kennedyらは、PSD III分画に濃縮され、堅固にPSDを構成している蛋白質として、PSD-95を同定した<ref><pubmed> 1419001 </pubmed></ref>。PSD-95は後に、[[NMDA型グルタミン酸受容体]]のカルボキシル末端に結合し、NMDA型グルタミン酸受容体のシナプスへの局在を規定している蛋白質として再同定された<ref><pubmed> 7569905 </pubmed></ref>。その後の研究により、PSD-95は様々なシナプス蛋白に結合する事が示され、[[足場蛋白質]]の典型例として知られている。
 また、Kennedyらは、PSD III分画に濃縮され、堅固にPSDを構成しているタンパク質として、PSD-95を同定した<ref><pubmed> 1419001 </pubmed></ref>。PSD-95は後に、[[NMDA型グルタミン酸受容体]]のカルボキシル末端に結合し、NMDA型グルタミン酸受容体のシナプスへの局在を規定しているタンパク質として再同定された<ref><pubmed> 7569905 </pubmed></ref>。その後の研究により、PSD-95は様々なシナプスタンパクに結合する事が示され、[[足場タンパク質]]の典型例として知られている。


 一方で、[[wikipedia:ja:ゲノム計画|ゲノム計画]]の完成、[[質量分析計]]技術の進歩により、PSDに存在する蛋白質を網羅的に解析する事も出来る様になった<ref name=peng_mol_cell_proteomics><pubmed>15020595</pubmed></ref><ref><pubmed> 15169875 </pubmed></ref><ref><pubmed> 15572359 </pubmed></ref>。その構成要素はシナプス伝達に関与する分子([[受容体]]など)のほか、細胞内[[情報伝達分子]]([[蛋白質リン酸化酵素]]、[[小分子GTP結合蛋白質]]など)、[[細胞骨格]]系分子([[アクチン]]、[[スペクトリン]]など)、足場蛋白質(PSD-95、[[Shank]]、[[Homer]]など)、[[細胞接着分子]]([[カドヘリン]]、[[ニューロリギン]]など)が見いだされている。
 一方で、[[wikipedia:ja:ゲノム計画|ゲノム計画]]の完成、[[質量分析計]]技術の進歩により、PSDに存在するタンパク質を網羅的に解析する事も出来る様になった<ref name=peng_mol_cell_proteomics><pubmed>15020595</pubmed></ref><ref><pubmed> 15169875 </pubmed></ref><ref><pubmed> 15572359 </pubmed></ref>。その構成要素はシナプス伝達に関与する分子([[受容体]]など)のほか、細胞内[[情報伝達分子]]([[タンパク質リン酸化酵素]]、[[小分子GTP結合タンパク質]]など)、[[細胞骨格]]系分子([[アクチン]]、[[スペクトリン]]など)、足場タンパク質(PSD-95、[[Shank]]、[[Homer]]など)、[[細胞接着分子]]([[カドヘリン]]、[[ニューロリギン]]など)が見いだされている。


 Shengらは一個のPSDの[[wikipedia:ja:分子量|分子量]]とその要素の構成比から、一個のPSDの中にある分子の数を推定した<ref name=sheng_ann_rev_biochem><pubmed> 17243894 </pubmed></ref><ref><pubmed>16507876</pubmed></ref>。それによると多い蛋白質で数百個の単位で存在することが判った。 この数値は、杉山らが独立に[[GFP]]融合蛋白質、[[免疫染色]]と[[蛍光]]標準ビーズを組み合わせた実験から得られた数字と驚くほど一致している<ref name=sugiyama_nature_method><pubmed> 16118638 </pubmed></ref>。また、電気生理学的解析によっても一つのシナプスに存在する受容体数は数十から数百個であり、妥当な数字である。  
 Shengらは一個のPSDの[[wikipedia:ja:分子量|分子量]]とその要素の構成比から、一個のPSDの中にある分子の数を推定した<ref name=sheng_ann_rev_biochem><pubmed> 17243894 </pubmed></ref><ref><pubmed>16507876</pubmed></ref>。それによると多いタンパク質で数百個の単位で存在することが判った。 この数値は、杉山らが独立に[[GFP]]融合タンパク質、[[免疫染色]]と[[蛍光]]標準ビーズを組み合わせた実験から得られた数字と驚くほど一致している<ref name=sugiyama_nature_method><pubmed> 16118638 </pubmed></ref>。また、電気生理学的解析によっても一つのシナプスに存在する受容体数は数十から数百個であり、妥当な数字である。  


 これらのPSD分子は、蛋白質[[ドメイン]]間相互作用により、お互い結合し合っている。どの蛋白質が、PSDの最も中心に存在するかは判っていないが、一つの候補としてHomerとShankがある。この両者を精製し、混合することにより、PSDと同様な、網目状構造が再構築できるのに加え、そこにアダプター蛋白質であるGKAPを加えると組み込まれる<ref><pubmed> 19345194 </pubmed></ref>。GKAPはさらにPSD-95を介しシナプス膜表面の[[グルタミン酸受容体]]に結合するので、ShankとHomerを基盤としてその他の蛋白質が次々に結合していくことで、PSDが形成されている可能性がある。実際にPSDとShankをニューロンに過剰発現することによりPSDが大きくなることが知られている<ref><pubmed> 11498055 </pubmed></ref>。  
 これらのPSD分子は、タンパク質[[ドメイン]]間相互作用により、お互い結合し合っている。どのタンパク質が、PSDの最も中心に存在するかは判っていないが、一つの候補としてHomerとShankがある。この両者を精製し、混合することにより、PSDと同様な、網目状構造が再構築できるのに加え、そこにアダプタータンパク質であるGKAPを加えると組み込まれる<ref><pubmed> 19345194 </pubmed></ref>。GKAPはさらにPSD-95を介しシナプス膜表面の[[グルタミン酸受容体]]に結合するので、ShankとHomerを基盤としてその他のタンパク質が次々に結合していくことで、PSDが形成されている可能性がある。実際にPSDとShankをニューロンに過剰発現することによりPSDが大きくなることが知られている<ref><pubmed> 11498055 </pubmed></ref>。  


 [[免疫電子顕微鏡]]による観察からは、様々なPSD蛋白質が膜直下から鉛直方向に層構造を作っていること、また、シナプス中心から水平方向に周辺部に向かっても蛋白質それぞれの分布をしていることが知られている<ref><pubmed> 11160391 </pubmed></ref>。
 [[免疫電子顕微鏡]]による観察からは、様々なPSDタンパク質が膜直下から鉛直方向に層構造を作っていること、また、シナプス中心から水平方向に周辺部に向かってもタンパク質それぞれの分布をしていることが知られている<ref><pubmed> 11160391 </pubmed></ref>。


== 分子構造のダイナミクス  ==
== 分子構造のダイナミクス  ==
[[ファイル:GFP-PSD-95.png|thumb|right|'''GFP-PSD-95の経時観察'''<br>画像は1時間毎。岡部らによる<ref name=okabe_nature_neurosci><pubmed> 10461219 </pubmed></ref>。]]
[[ファイル:GFP-PSD-95.png|thumb|right|'''GFP-PSD-95の経時観察'''<br>画像は1時間毎。岡部らによる<ref name=okabe_nature_neurosci><pubmed> 10461219 </pubmed></ref>。]]
 岡部らはPSDのコア蛋白質であるPSD-95をGFP融合蛋白とし、神経細胞に導入した上で、経時観察を行った。それによると、PSDは常に形態的に変化していることが判った。さらに、一個のPSDに存在するPSD-95-GFPの蛍光を褪色させて、その回復を測定する方法([[光褪色後蛍光回復法]]、FRAP)によりPSD-95のturnoverを観察した<ref name=okabe_nature_neurosci><pubmed> 10461219 </pubmed></ref>。その結果、PSDに存在するPSD-95は早いturnoverを示す成分(数十分の単位)と1時間程度の観察ではほとんどturnoverが認められない2つの成分が有ることが判った。様々な蛋白質についてさらに検討を加えた所、蛋白質によってアクチンのように殆どの分子が数分以内に入れ替わる分子もある一方で、PSD-95のように遅い分子も有ることが判った<ref><pubmed> 16855097 </pubmed></ref>。同じ蛋白質で早い成分と遅い成分が有るとき、それらがPSDでいかに配置されているかは興味深い問題であるが、これもまだ明らかにされていない。PSDの蛋白質は[[樹状突起]]から供給されるのに加え、隣りのシナプスからも供給される。
 岡部らはPSDのコアタンパク質であるPSD-95をGFP融合タンパクとし、神経細胞に導入した上で、経時観察を行った。それによると、PSDは常に形態的に変化していることが判った。さらに、一個のPSDに存在するPSD-95-GFPの蛍光を褪色させて、その回復を測定する方法([[光褪色後蛍光回復法]]、FRAP)によりPSD-95のturnoverを観察した<ref name=okabe_nature_neurosci><pubmed> 10461219 </pubmed></ref>。その結果、PSDに存在するPSD-95は早いturnoverを示す成分(数十分の単位)と1時間程度の観察ではほとんどturnoverが認められない2つの成分が有ることが判った。様々なタンパク質についてさらに検討を加えた所、タンパク質によってアクチンのように殆どの分子が数分以内に入れ替わる分子もある一方で、PSD-95のように遅い分子も有ることが判った<ref><pubmed> 16855097 </pubmed></ref>。同じタンパク質で早い成分と遅い成分が有るとき、それらがPSDでいかに配置されているかは興味深い問題であるが、これもまだ明らかにされていない。PSDのタンパク質は[[樹状突起]]から供給されるのに加え、隣りのシナプスからも供給される。


 分子のturnoverの速度を規定しているのは、その蛋白質の分子量と形状により影響される[[wikipedia:ja:拡散|拡散]]速度に加え、結合部位の存在や[[蛋白質修飾]]などが深く関わっているものと考えられる。また、この移行が、拡散による能動的な過程か、あるいは[[モーター蛋白質]]を利用した受動的過程は判っていないが、おそらく両者が有るものと考えられる。また、この時に多くのPSD構成要素が予め複合体を形成しつつ既存のPSDに付け加わって行くのか、それとも個々の蛋白質が付け加わった時に始めて複合体になるかはまだ判っていない。
 分子のturnoverの速度を規定しているのは、そのタンパク質の分子量と形状により影響される[[wikipedia:ja:拡散|拡散]]速度に加え、結合部位の存在や[[タンパク質修飾]]などが深く関わっているものと考えられる。また、この移行が、拡散による能動的な過程か、あるいは[[モータータンパク質]]を利用した受動的過程は判っていないが、おそらく両者が有るものと考えられる。また、この時に多くのPSD構成要素が予め複合体を形成しつつ既存のPSDに付け加わって行くのか、それとも個々のタンパク質が付け加わった時に始めて複合体になるかはまだ判っていない。


 神経活動依存的な[[AMPA型グルタミン酸受容体]]のシナプスへの移行が[[シナプス可塑性]]の主要な機構であり<ref><pubmed> 10364548 </pubmed></ref>、その裏打ち構造であるPSDがいかに変化するかはシナプス可塑性の分子機構を理解するのに重要である。神経活動依存的なシナプスへの移行はCaMKIIで初めて見いだされ<ref><pubmed> 10102820 </pubmed></ref>、これはCa<sup>2+</sup>/カルモジュリンによる蛋白質リン酸化酵素活性の活性化による。しかし、数百に及ぶPSD構成要素がいかにシナプス可塑性で変化していくかの全体像はまだ得られていない。
 神経活動依存的な[[AMPA型グルタミン酸受容体]]のシナプスへの移行が[[シナプス可塑性]]の主要な機構であり<ref><pubmed> 10364548 </pubmed></ref>、その裏打ち構造であるPSDがいかに変化するかはシナプス可塑性の分子機構を理解するのに重要である。神経活動依存的なシナプスへの移行はCaMKIIで初めて見いだされ<ref><pubmed> 10102820 </pubmed></ref>、これはCa<sup>2+</sup>/カルモジュリンによるタンパク質リン酸化酵素活性の活性化による。しかし、数百に及ぶPSD構成要素がいかにシナプス可塑性で変化していくかの全体像はまだ得られていない。


==将来展望==
==将来展望==

案内メニュー