「コネクトーム」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
8行目: 8行目:
英:connectome  独:Konnektom  仏:connectome  西:conectoma   露:Коннектом  中:连接组  
英:connectome  独:Konnektom  仏:connectome  西:conectoma   露:Коннектом  中:连接组  


{{box|text=コネクトームは、神経系のすべての神経細胞が接続することでできた神経回路の全体を意味する。本来は、ある動物個体、あるいはある動物種の神経系において、全神経細胞の接続の総体を意味する概念である。しかしながら、神経系の一部で神経細胞が化学シナプスや電気シナプスで接続された局所的な接続ダイアグラム(Wiring diagram)に言及する場合にも、しばしば使われる。更に、神経細胞レベルでの接続だけでなく、脳の大まかな領域同士が接続する様相の説明にも使われている。'''コネクトミクス(connectomics)'''は、コネクトームを理解するための研究法、つまり実験、検出などの方法、その方法を適用した結果の解釈、そして複数の方法論を統合した研究の戦略についての概念である。}}
{{box|text=コネクトームは、神経系のすべての神経細胞が接続することでできた神経回路の全体を意味する。本来は、ある動物個体、あるいはある動物種の神経系において、全神経細胞の接続の総体を意味する概念である。しかしながら、神経系の一部で神経細胞が[[化学シナプス]]や[[電気シナプス]]で接続された局所的な接続ダイアグラム(Wiring diagram)に言及する場合にも、しばしば使われる。更に、神経細胞レベルでの接続だけでなく、脳の大まかな領域同士が接続する様相の説明にも使われている。'''コネクトミクス(connectomics)'''は、コネクトームを理解するための研究法、つまり実験、検出などの方法、その方法を適用した結果の解釈、そして複数の方法論を統合した研究の戦略についての概念である。}}




38行目: 38行目:


====2)電子顕微鏡====
====2)電子顕微鏡====
電子顕微鏡写真に基づき、形態的にコネクトームを構築することは、センチュウのコネクトーム構築でも利用された効果的な方法であり、マウス網膜、マウス大脳皮質視覚野、ショウジョウバエ視覚系(図3)などで部分的なコネクトーム的な報告がなされてきている<ref><pubmed>21390125</pubmed></ref><ref><pubmed>21390124</pubmed></ref><ref><pubmed>23925240</pubmed></ref><ref><pubmed>26232230</pubmed></ref><ref><pubmed>27015312</pubmed></ref>。哺乳類の脳のようにサイズの大きな構造におけるコネクトームの構築では、薄い連続切片を失うことなく、巨大な数の電子顕微鏡写真撮影を行い、それぞれの写真上の神経細胞とその突起、結合性を、多数の写真上で逐一トレース、全体を再構築していく必要がある。その情報量は、近年の大容量デジタル情報の保存媒体とコンピューティングの発達が可能にした[[ビッグデータ]]の典型であり、各種の方法論の開発が進められてきている<ref><pubmed>24598270</pubmed></ref>。特に重要なのは、神経細胞の電子顕微鏡写真のトレースを一箇所間違えると、全く違う神経細胞をトレースすることになるという危険性があることである。そのため、Sebastian Seungらは、網膜のコネクトームを理解するために、ゲーム感覚で、神経細胞のコネクトーム構築に、一般市民を参加させようとするEyeWire<ref>http://eyewire.org/</ref>と名付けたウェッブサイトを構築している。これは、現状では、ヒトという作業者の目で電子顕微鏡写真を見て、それをトレースしていくことが、最も確実であるということから実施されているものである。将来は、ディープラーニングを行う人工知能により、コネクトーム構築の精密作業が自動化される可能性も高い。このアプローチにおいては、神経細胞の広がりが小さく局所的なケースでは電子顕微鏡写真上での追跡も比較的容易であろうが、例えば長い神経線維でつながった神経細胞同士のコネクトームを構築することは困難である。この問題の解決には、次項の遺伝学的標識法との組み合わせを利用するのが有用であろう。
電子顕微鏡写真に基づき、形態的にコネクトームを構築することは、センチュウのコネクトーム構築でも利用された効果的な方法であり、マウス網膜、マウス大脳皮質視覚野、ショウジョウバエ視覚系(図3)などで部分的なコネクトーム的な報告がなされてきている<ref><pubmed>21390125</pubmed></ref><ref><pubmed>21390124</pubmed></ref><ref><pubmed>23925240</pubmed></ref><ref><pubmed>26232230</pubmed></ref><ref><pubmed>27015312</pubmed></ref><ref>http://www.openconnectomeproject.org/</ref>。哺乳類の脳のようにサイズの大きな構造におけるコネクトームの構築では、薄い連続切片を失うことなく、巨大な数の電子顕微鏡写真撮影を行い、それぞれの写真上の神経細胞とその突起、結合性を、多数の写真上で逐一トレース、全体を再構築していく必要がある。その情報量は、近年の大容量デジタル情報の保存媒体とコンピューティングの発達が可能にした[[ビッグデータ]]の典型であり、各種の方法論の開発が進められてきている<ref><pubmed>24598270</pubmed></ref>。特に重要なのは、神経細胞の電子顕微鏡写真のトレースを一箇所間違えると、全く違う神経細胞をトレースすることになるという危険性があることである。そのため、Sebastian Seungらは、網膜のコネクトームを理解するために、ゲーム感覚で、神経細胞のコネクトーム構築に、一般市民を参加させようとするEyeWire<ref>http://eyewire.org/</ref>と名付けたウェッブサイトを構築している。これは、現状では、ヒトという作業者の目で電子顕微鏡写真を見て、それをトレースしていくことが、最も確実であるということから実施されているものである。将来は、ディープラーニングを行う人工知能により、コネクトーム構築の精密作業が自動化される可能性も高い。このアプローチにおいては、神経細胞の広がりが小さく局所的なケースでは電子顕微鏡写真上での追跡も比較的容易であろうが、例えば長い神経線維でつながった神経細胞同士のコネクトームを構築することは困難である。この問題の解決には、次項の遺伝学的標識法との組み合わせを利用するのが有用であろう。


[[ファイル:Fly.jpg|サムネイル|左|図3 ショウジョウバエ視覚系の連続切片の電子顕微鏡写真に現れた細胞をトレースすることでコネクトームを理解 http://openconnecto.me/takemura13 doi: 10.1038/nature12450]]
[[ファイル:Fly.jpg|サムネイル|左|図3 ショウジョウバエ視覚系の連続切片の電子顕微鏡写真に現れた細胞をトレースすることでコネクトームを理解 http://openconnecto.me/takemura13 doi: 10.1038/nature12450]]
64行目: 64行目:
Olaf Spornsによるヒト・コネクトームの提唱以来、脳の機能と病態を理解するためにヒトの脳で研究されているのは、メソレベルのコネクトームより更に大きく、脳全体を視野にいれた「マクロスケール Macroscale」の巨視的なコネクトームである。これは、しばしば、様々なタスクに伴う脳の活動領域を観察する[[脳マッピング]]と同時に関心を持たれている。米国の脳科学プロジェクトである[[BRAINイニシアティブ]]の一部として実施されている国際プロジェクトであるHuman Connectome Project<ref>http://www.neuroscienceblueprint.nih.gov/connectome/</ref>では、fMRI(図5)による活動領域の検出など機能的な側面に重点を置く国際プロジェクトThe WU-Minn Project<ref>https://www.humanconnectome.org/</ref>と、非侵襲なテンソルMRIなどを中心に用い神経線維の走行を重視するThe Harvard/MGH-UCLA Project<ref>http://www.humanconnectomeproject.org/</ref>が実施されてきた(図6)。いずれも、解像度が上がれば、メソスケールのコネクトームにも近づくが、非侵襲で得られる解像度は、最大でもミリメートル程度であり、侵襲的な方法で得られる解像度とは違いがある。
Olaf Spornsによるヒト・コネクトームの提唱以来、脳の機能と病態を理解するためにヒトの脳で研究されているのは、メソレベルのコネクトームより更に大きく、脳全体を視野にいれた「マクロスケール Macroscale」の巨視的なコネクトームである。これは、しばしば、様々なタスクに伴う脳の活動領域を観察する[[脳マッピング]]と同時に関心を持たれている。米国の脳科学プロジェクトである[[BRAINイニシアティブ]]の一部として実施されている国際プロジェクトであるHuman Connectome Project<ref>http://www.neuroscienceblueprint.nih.gov/connectome/</ref>では、fMRI(図5)による活動領域の検出など機能的な側面に重点を置く国際プロジェクトThe WU-Minn Project<ref>https://www.humanconnectome.org/</ref>と、非侵襲なテンソルMRIなどを中心に用い神経線維の走行を重視するThe Harvard/MGH-UCLA Project<ref>http://www.humanconnectomeproject.org/</ref>が実施されてきた(図6)。いずれも、解像度が上がれば、メソスケールのコネクトームにも近づくが、非侵襲で得られる解像度は、最大でもミリメートル程度であり、侵襲的な方法で得られる解像度とは違いがある。


[[ファイル:Story-vs-math Task-fMRI.png|サムネイル|左|図5 '''fMRI''': Story vs Math. Image courtesy D. Barch, M. Harms, G. Burgess for the WU-Minn HCP consortium - http://humanconnectome.org]]
[[ファイル:Story-vs-math Task-fMRI.png|サムネイル|左|図5 '''fMRI''' : Story vs Math. Image courtesy D. Barch, M. Harms, G. Burgess for the WU-Minn HCP consortium - http://humanconnectome.org]]


⾮侵襲脳計測法として、現在、ヒトの脳活動解析技術の主役となっているのは、[[fMRI]](functional MRI)である。fMRIでは、MRIにより、⾎流の流れと、脱酸素化ヘモグロビンの濃度変化をみる([BOLD効果])ことで、神経活動に伴う変動を検出する。つまり、ニューロンの活動を直接観察しているわけではないので、実際のニューロンの活動とは、秒単位の時間的なズレがある。そして、休⽌状態の⼤脳のある領域と別の領域が同調して⾃発的に変動するということが、結合状態にあるということを意味していると仮定すれば、fMRIを使って、領域間のつながりも推定することもできる(休⽌状態fMRI)。この⽅法は、領域間の結合関係、つまりコネクトーム推定の有⼒な⼿段になっている。実際に⼤規模なデータを集めてきているのは、⽶Washington大学(ミズーリ州)と⽶University of Minnesota、そして英Oxford大学を中⼼とするコンソーシアムである。このプロジェクトでは、健常な成⼈を⽬標に、fMRI、[[PET]]、[[EEG]]、[[MEG]]を使うことで、それぞれの脳や⾏動関係の情報を収集してきている。fMRIは、高度な脳機能の理解に利用されている。例えば、2016年、California大学Berkeley校のグループは、自然言語のそれぞれの単語と大脳皮質活動領域を関連づける脳マップを作製した<ref><pubmed>27121839</pubmed></ref>。このような脳マップの中で、コネクトームを理解することが重要である。
⾮侵襲脳計測法として、現在、ヒトの脳活動解析技術の主役となっているのは、[[fMRI]](functional MRI)である。fMRIでは、MRIにより、⾎流の流れと、脱酸素化ヘモグロビンの濃度変化をみる([BOLD効果])ことで、神経活動に伴う変動を検出する。つまり、ニューロンの活動を直接観察しているわけではないので、実際のニューロンの活動とは、秒単位の時間的なズレがある。そして、休⽌状態の⼤脳のある領域と別の領域が同調して⾃発的に変動するということが、結合状態にあるということを意味していると仮定すれば、fMRIを使って、領域間のつながりも推定することもできる(休⽌状態fMRI)。この⽅法は、領域間の結合関係、つまりコネクトーム推定の有⼒な⼿段になっている。実際に⼤規模なデータを集めてきているのは、⽶Washington大学(ミズーリ州)と⽶University of Minnesota、そして英Oxford大学を中⼼とするコンソーシアムである。このプロジェクトでは、健常な成⼈を⽬標に、fMRI、[[PET]]、[[EEG]]、[[MEG]]を使うことで、それぞれの脳や⾏動関係の情報を収集してきている。fMRIは、高度な脳機能の理解に利用されている。例えば、2016年、California大学Berkeley校のグループは、自然言語のそれぞれの単語と大脳皮質活動領域を関連づける脳マップを作製した<ref><pubmed>27121839</pubmed></ref>。このような脳マップの中で、コネクトームを理解することが重要である。


[[ファイル:Diffusion FA.JPG|サムネイル|右|図6 '''dMRI''':Fractional anisotropy (top), and principal diffusion directions (bottom) images from the HCP dMRI.  Image courtesy of the WU-Minn HCP consortium - http://humanconnectome.org]]
[[ファイル:Diffusion FA.JPG|サムネイル|右|図6 '''dMRI''' : Fractional anisotropy (top), and principal diffusion directions (bottom) images from the HCP dMRI.  Image courtesy of the WU-Minn HCP consortium - http://humanconnectome.org]]


⼀⽅、[[拡散MRI(dMRI)]]、[[テンソルMRI]]、そしてより新しい方法である[[DSI(拡散スペクトラムイメージング, diffusion spectrum imaging, DSI)]]と[[HARDI (拡散強調イメージング、High angular resolution diffusion imaging)]]は、脳内にある軸索の束となった⻑距離の接続の様⼦をマッピングする。この⽅法を使うと、⽣きた脳の中で、そのまま神経の⾛⾏を観察することができる。しかし、神経線維の⾛⾏をみているだけで、実際の結合性を⾒ているものではないが、今後のコネクトーム理解の方法論として期待ができる<ref>http://www.the-scientist.com/?articles.view/articleNo/41266/title/White-s-the-Matter/</ref>。
⼀⽅、[[拡散MRI(dMRI)]]、[[テンソルMRI]]、そしてより新しい方法である[[DSI(拡散スペクトラムイメージング, diffusion spectrum imaging, DSI)]]と[[HARDI (拡散強調イメージング、High angular resolution diffusion imaging)]]は、脳内にある軸索の束となった⻑距離の接続の様⼦をマッピングする。この⽅法を使うと、⽣きた脳の中で、そのまま神経の⾛⾏を観察することができる。しかし、神経線維の⾛⾏をみているだけで、実際の結合性を⾒ているものではないが、今後のコネクトーム理解の方法論として期待ができる<ref>http://www.the-scientist.com/?articles.view/articleNo/41266/title/White-s-the-Matter/</ref>。


==機能的コネクトーム==
==機能的コネクトーム==
2012年、Richard Yuste(Columbia大学)、George Church(Harvard大学)らが、「The Brain Activity MapProject and the Challenge of Functional Connectomics」と題する提案をした<ref><pubmed>22726828</pubmed></ref><ref><pubmed>23470729</pubmed></ref>。Kavli財団を中心としたBrain Activity Map(BAM)プロジェクトについての提案である。この概念では、主に電子顕微鏡の利用などを想定した「構造的コネクトーム(Structural connectome)」に対して、すべての神経細胞の活動のパターンを動的にマッピングする「機能的コネクトーム(functional connectome)」を提唱している。その後の技術的進歩により、その方法論については、当初イメージしていたことから徐々に変更になっているが、基本的には、神経細胞の活動に着眼して、上述した大規模生理学的な方法とfMRIなどの方法を、新技術の開発により達成して機能面からのコネクトームを理解しようという提唱である<ref><pubmed>25654253</pubmed></ref>。機能的コネクトームの情報が、構造的コネクトームの情報とともに不可欠なのは、センチュウとは対照的に、ヒトを含めた哺乳類の神経系では構造的な[[可塑性]]が見られるということである。例えば、神経細胞の[[スパイン]]は動的な構造であり、出現したり消失したりする<ref><pubmed>14708001</pubmed></ref>。つまり、シナプスの結合性や構造は神経系が機能する際、大きく変化しているので、構造的コネクトームだけで、神経回路の働きを把握することは全く不十分であり、神経活動の情報を含めた機能的コネクトームの考慮が大切であるという議論が背景にある。
2012年、Richard Yuste(Columbia大学)、George Church(Harvard大学)らが、「The Brain Activity MapProject and the Challenge of Functional Connectomics」と題する提案をした<ref><pubmed>22726828</pubmed></ref><ref><pubmed>23470729</pubmed></ref>。民間財団であるKavli財団を中心としたBrain Activity Map(BAM)プロジェクトについての提案であり、主に電子顕微鏡の利用などを想定した「構造的コネクトーム(Structural connectome)」に対して、すべての神経細胞の活動のパターンを動的にマッピングする「機能的コネクトーム(functional connectome)」の解明を提唱している。その後の技術的進歩により、その方法論については、当初イメージしていたことから徐々に変更になっているが、基本的には、神経細胞の活動に着眼して、上述した大規模生理学的な方法とfMRIなどの方法を、新技術の開発により達成して機能面からのコネクトームを理解しようという提案である<ref><pubmed>25654253</pubmed></ref>。機能的コネクトームの情報が、構造的コネクトームの情報とともに不可欠なのは、センチュウとは対照的に、ヒトを含めた哺乳類の神経系では構造的な[[可塑性]]が見られるということである。例えば、神経細胞の[[スパイン]]は動的な構造であり、出現したり消失したりする<ref><pubmed>14708001</pubmed></ref>。つまり、シナプスの結合性や構造は神経系が機能する際、大きく変化しているので、構造的コネクトームだけで、神経回路の働きを把握することは全く不十分であり、神経活動の情報を含めた機能的コネクトームの考慮が大切であるという議論が背景にある。


<br />
<br />

案内メニュー