「眼優位性」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
編集の要約なし
29行目: 29行目:
[[ファイル:Yoshiohata_fig_2.jpg|350px|thumb|'''図2.ヒトの眼優位コラム'''<br>一側眼球を失ったヒトの左視覚野を伸展標本とし、チトクロームオキシダーゼ染色で眼優位コラムを可視化してある。Ⅳ層部分のモンタージュを示す。標本中央部のストライブ構造が眼優位コラムである。Adams et al. (2007)<ref name="humanOcDom" />より引用。]]
[[ファイル:Yoshiohata_fig_2.jpg|350px|thumb|'''図2.ヒトの眼優位コラム'''<br>一側眼球を失ったヒトの左視覚野を伸展標本とし、チトクロームオキシダーゼ染色で眼優位コラムを可視化してある。Ⅳ層部分のモンタージュを示す。標本中央部のストライブ構造が眼優位コラムである。Adams et al. (2007)<ref name="humanOcDom" />より引用。]]


 V1には様々な眼優位性をもつニューロンが存在するが、霊長類やネコでは、それらは皮質内においてランダムに存在するわけではなく、似たような性質の、つまりより強く反応する眼(優位眼)を同じくするニューロンが皮質表面から[[白質]]まで垂直に配列し、'''[[眼優位コラム]]'''と呼ばれる機能構造を形成している。この機能構造は、皮質に垂直に刺入した電極から、様々な深さで同じ眼に強く反応するニューロンが記録されることで明らかとなった<ref name="catV1" />。その他に、一方の眼を刺激した時に活動する皮質領域を、神経活動依存的な[[最初期遺伝子]]の発現や、皮質の[[内因性光学信号]]<ref><pubmed> 2165630 </pubmed></ref>により計測すること、さらに[[チトクロームオキシダーゼ]]活性の組織染色など様々な方法で眼優位コラムを可視化することができる。
 V1には様々な眼優位性をもつニューロンが存在するが、霊長類やネコでは、それらは皮質内においてランダムに存在するわけではなく、似たような性質の、つまりより強く反応する眼(優位眼)を同じくするニューロンが皮質表面から[[白質]]まで垂直に配列し、'''[[眼優位コラム]]'''と呼ばれる機能構造を形成している。この機能構造は、皮質に垂直に刺入した電極から、様々な深さで同じ眼に強く反応するニューロンが記録されることで明らかとなった<ref name="catV1" />。その他に、一方の眼を刺激した時に活動する皮質領域を、神経活動依存的な[[最初期遺伝子]]の発現<ref><pubmed> 8481787 </pubmed></ref>や、皮質の[[内因性光学信号]]<ref><pubmed> 2165630 </pubmed></ref>により計測すること、さらに[[チトクロームオキシダーゼ]]活性の組織染色など様々な方法で眼優位コラムを可視化することができる。


 眼優位コラムの形態学的な基盤は、それぞれの眼の入力を伝えるLGNからの入力軸索が、V1内で分離していることである。その構造は[[transneuronal labeling法]]により観察することができる。一方の眼球に放射性[[wj:アミノ酸|アミノ酸]]([<sup>3</sup>H]-プロリンなど)や[[小麦胚細胞凝集素]] ([[wheat germ agglutinin]])などをトレーサーとして注入すると、網膜[[神経節細胞]]に取り込まれたトレーサーがLGNニューロンに受け渡され、V1に投射する軸索を標識する。これにより,標識した眼からの情報が皮質のどこに投射するかを調べることができる。この方法で一方の眼の投射領域を可視化すると、霊長類ではストライブ上の構造が見られる(図2)。
 眼優位コラムの形態学的な基盤は、それぞれの眼の入力を伝えるLGNからの入力軸索が、V1内で分離していることである。その構造は[[経ニューロン標識(transneuronal labeling)法]]により観察することができる。一方の眼球に放射性[[wj:アミノ酸|アミノ酸]]([<sup>3</sup>H]-プロリンなど)や[[小麦胚細胞凝集素]] ([[wheat germ agglutinin]])などをトレーサーとして注入すると、網膜[[神経節細胞]]に取り込まれたトレーサーがLGNニューロンに受け渡され、V1に投射する軸索を標識する。これにより,標識した眼からの情報が皮質のどこに投射するかを調べることができる。この方法で一方の眼の投射領域を可視化すると、霊長類ではストライブ上の構造が見られる(図2)。


 眼優位コラムの形態やサイズは[[動物]]種によって異なる。[[ヒト]]と[[マカクザル]]は共にストライプ状の眼優位コラムを持つが、マカクザルでは幅が400-700μmであるのに対して<ref><pubmed> 8929431 </pubmed></ref>、ヒトでは700-1000μmとやや広い<ref name="humanOcDom"><pubmed> 17898211 </pubmed></ref>。ネコではストライプではなくパッチ状の形態を示し、幅は数百μmである<ref><pubmed> 12110955 </pubmed></ref>。げっ歯類ではV1の中で様々な眼優位性のニューロンが混在しており、眼優位コラムのような構造は確認されていない。また、眼優位コラムの形態やサイズは同じ種の動物でもかなり違いがあり、たとえば[[リスザル]]では明瞭なコラム構造が見られる個体とそうでない個体、さらに同じ個体の視覚野内でコラム構造が見られる部分とそうでない部分が混在している例が報告されている<ref><pubmed> 12536211 </pubmed></ref>。
 眼優位コラムの形態やサイズは[[動物]]種によって異なる。[[ヒト]]と[[マカクザル]]は共にストライプ状の眼優位コラムを持つが、マカクザルでは幅が400-700μmであるのに対して<ref><pubmed> 8929431 </pubmed></ref>、ヒトでは700-1000μmとやや広い<ref name="humanOcDom"><pubmed> 17898211 </pubmed></ref>。ネコではストライプではなくパッチ状の形態を示し、幅は数百μmである<ref><pubmed> 12110955 </pubmed></ref>。げっ歯類ではV1の中で様々な眼優位性のニューロンが混在しており、眼優位コラムのような構造は確認されていない。また、眼優位コラムの形態やサイズは同じ種の動物でもかなり違いがあり、たとえば[[リスザル]]では明瞭なコラム構造が見られる個体とそうでない個体、さらに同じ個体の視覚野内でコラム構造が見られる部分とそうでない部分が混在している例が報告されている<ref><pubmed> 12536211 </pubmed></ref>。
38行目: 38行目:


==発達と可塑性==
==発達と可塑性==
 眼優位コラムの形成過程は広く研究されてきた。例えば、様々な生後齢の仔ネコを用いてTransneuronal labeling法により眼優位コラムを調べてみると、生後2週目では視覚野内に一様に分布し、コラム状の構造は認められない。しかしその後、生後4週目頃より次第に[[神経終末]]の局在化が進み、成熟脳にみられるようなパターンとなると報告された<ref><pubmed> 8980725 </pubmed></ref>。またこの時期に動物を暗所で飼育して視覚入力を奪うと眼優位コラムが明瞭でなくなること<ref><pubmed> 7207626 </pubmed></ref>、また一方の眼を閉じて視覚遮断すると遮蔽眼のコラムが縮小することも明らかとなった<ref><pubmed> 6772696 </pubmed></ref><ref><pubmed> 702379 </pubmed></ref>。これらのことから、発達初期には両眼からの入力は分離しておらず混在しており、その後、発達するにつれて、視覚経験に依存した仕組みにより眼優位コラムが形成されると考えられた。
 眼優位コラムの形成過程は広く研究されてきた。例えば、様々な生後齢の仔ネコを用いて経ニューロン標識法により眼優位コラムを調べてみると、生後2週目では視覚野内に一様に分布し、コラム状の構造は認められない。しかしその後、生後4週目頃より次第に[[神経終末]]の局在化が進み、成熟脳にみられるようなパターンとなると報告された<ref><pubmed> 8980725 </pubmed></ref>。またこの時期に動物を暗所で飼育して視覚入力を奪うと眼優位コラムが明瞭でなくなること<ref><pubmed> 7207626 </pubmed></ref>、また一方の眼を閉じて視覚遮断すると遮蔽眼のコラムが縮小することも明らかとなった<ref><pubmed> 6772696 </pubmed></ref><ref><pubmed> 702379 </pubmed></ref>。これらのことから、発達初期には両眼からの入力は分離しておらず混在しており、その後、発達するにつれて、視覚経験に依存した仕組みにより眼優位コラムが形成されると考えられた。


 しかし一方、サルでは、出生時にすでに明瞭なコラム構造が観察される<ref><pubmed> 8774447 </pubmed></ref>。さらにネコや[[フェレット]]でも、transneuronal labeling法によりコラム構造が検出されなかった幼弱な時期にも眼優位コラムが存在することが、LGN軸索の直接標識や内因性信号の光学計測により明らかとなった<ref><pubmed> 11082053 </pubmed></ref><ref><pubmed> 11135259 </pubmed></ref>。以上より現在では、眼優位コラムの初期形成に視覚経験は必要でないが、その発達過程に視覚環境が影響すると考えられている。眼優位コラムの初期形成が、回路形成の[[ガイダンス分子]]によるものなのか、神経活動に依存したメカニズムによるものなのか、あるいはその両方かは明らかになっていない。しかし網膜にパターン化された自発神経活動があること、その阻害が眼優位コラム形成に影響することなどから、視覚経験によらない自発神経活動がコラム形成に寄与するものと考えられている。
 しかし一方、サルでは、出生時にすでに明瞭なコラム構造が観察される<ref><pubmed> 8774447 </pubmed></ref>。さらにネコや[[フェレット]]でも、transneuronal labeling法によりコラム構造が検出されなかった幼弱な時期にも眼優位コラムが存在することが、LGN軸索の直接標識や内因性信号の光学計測により明らかとなった<ref><pubmed> 11082053 </pubmed></ref><ref><pubmed> 11135259 </pubmed></ref>。以上より現在では、眼優位コラムの初期形成に視覚経験は必要でないが、その発達過程に視覚環境が影響すると考えられている。眼優位コラムの初期形成が、回路形成の[[ガイダンス分子]]によるものなのか、神経活動に依存したメカニズムによるものなのか、あるいはその両方かは明らかになっていない。しかし網膜にパターン化された自発神経活動があること、その阻害が眼優位コラム形成に影響することなどから、視覚経験によらない自発神経活動がコラム形成に寄与するものと考えられている。
47

回編集

案内メニュー