「言語起源」の版間の差分

ナビゲーションに移動 検索に移動
サイズ変更なし 、 2017年3月22日 (水)
編集の要約なし
36行目: 36行目:
 鳥の発声の学習は2つの段階から成り立つ<ref name=ref3>'''Catchpole, C., & Slater, P.'''<br>Bird song: biological themes and variations<br>''Cambridge Univ Pr''. 2003</ref>。ひとつは感覚学習期と呼ばれ、種特有な音声刺激を環境より抽出して聴覚的な記憶を形成する過程である。通常の発育環境では、父親が発する音声を記憶する過程となる。もうひとつは感覚運動学習期と呼ばれる。発達に応じて分泌される性ホルモンの作用により、自発的な発声行動が始まる。この音声が聴覚的に自己にフィードバックされ、感覚学習期に形成された聴覚的な記憶(聴覚鋳型と呼ばれる)を手本として照合を取る。手本とのずれが甚だしい場合には、異なる音声を発する努力をし、手本に近い発声が得られた場合にはその運動パターンを保持するようにする。これが十分進展すると、手本と非常に類似した音声を自発することができるようになる。以上が歌学習の行動学的な記述である。
 鳥の発声の学習は2つの段階から成り立つ<ref name=ref3>'''Catchpole, C., & Slater, P.'''<br>Bird song: biological themes and variations<br>''Cambridge Univ Pr''. 2003</ref>。ひとつは感覚学習期と呼ばれ、種特有な音声刺激を環境より抽出して聴覚的な記憶を形成する過程である。通常の発育環境では、父親が発する音声を記憶する過程となる。もうひとつは感覚運動学習期と呼ばれる。発達に応じて分泌される性ホルモンの作用により、自発的な発声行動が始まる。この音声が聴覚的に自己にフィードバックされ、感覚学習期に形成された聴覚的な記憶(聴覚鋳型と呼ばれる)を手本として照合を取る。手本とのずれが甚だしい場合には、異なる音声を発する努力をし、手本に近い発声が得られた場合にはその運動パターンを保持するようにする。これが十分進展すると、手本と非常に類似した音声を自発することができるようになる。以上が歌学習の行動学的な記述である。


 次に、鳥の歌の神経メカニズムについて概説しよう<ref name=ref14>Zeigler, '''H., & Marler, P. E.''' <br>Behavioral neurobiology of birdsong.<br>2004</ref>。歌の音源は、気管支にある一対の発声器官である鳴管を呼気が通りベルヌーイ流を作ることで生成される。呼気の流速と鳴管の筋肉は、延髄の擬核と後擬核および第十二神経核によって制御され、これらはすべて自律神経系による調整と中脳水道灰白質からの情動性入力の調整を受ける。ここまでは発声器官一般の特徴であるが、鳥類ではさらに、大脳皮質運動野から直接投射を受け、意図的な制御が可能である。延髄の発声中枢を大脳皮質運動野が直接制御するという特徴は、鳥類以外では人間のみで発見されている。
 次に、鳥の歌の神経メカニズムについて概説しよう<ref name=ref14>'''Zeigler, H., & Marler, P. E.''' <br>Behavioral neurobiology of birdsong.<br>2004</ref>。歌の音源は、気管支にある一対の発声器官である鳴管を呼気が通りベルヌーイ流を作ることで生成される。呼気の流速と鳴管の筋肉は、延髄の擬核と後擬核および第十二神経核によって制御され、これらはすべて自律神経系による調整と中脳水道灰白質からの情動性入力の調整を受ける。ここまでは発声器官一般の特徴であるが、鳥類ではさらに、大脳皮質運動野から直接投射を受け、意図的な制御が可能である。延髄の発声中枢を大脳皮質運動野が直接制御するという特徴は、鳥類以外では人間のみで発見されている。


 大脳皮質運動野が発声中枢を直接制御することは、発声信号に可塑性をもたらすが、発声学習を可能にするわけではない。発声学習が可能になるためには、自己の発声信号を聴覚系にフィードバックし、お手本となる発声の聴覚鋳型と比較し、ずれがあれば修正していくような学習が必要である。この過程は強化学習モデルとして定式化されたが、これを可能にするメカニズムとして、大脳皮質と大脳基底核が作る誤差修正ループと、大脳皮質高次運動野に発見された聴覚・発声ミラーニューロンが提案されている<ref name=ref9><pubmed>18202651</pubmed></ref>。
 大脳皮質運動野が発声中枢を直接制御することは、発声信号に可塑性をもたらすが、発声学習を可能にするわけではない。発声学習が可能になるためには、自己の発声信号を聴覚系にフィードバックし、お手本となる発声の聴覚鋳型と比較し、ずれがあれば修正していくような学習が必要である。この過程は強化学習モデルとして定式化されたが、これを可能にするメカニズムとして、大脳皮質と大脳基底核が作る誤差修正ループと、大脳皮質高次運動野に発見された聴覚・発声ミラーニューロンが提案されている<ref name=ref9><pubmed>18202651</pubmed></ref>。

案内メニュー