「超解像蛍光顕微鏡」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
編集の要約なし
68行目: 68行目:
解析で得られる(''x<sub>m</sub>'',''y<sub>m</sub>'')が推定された分子の座標、''w<sub>m</sub>''は輝点の広がり具合に相当し、以下の式から推定した座標の「不確かさ(σ<sub>''x,y''</sub>)''<sub>m</sub>''」を計算する際に用いられる。他のパラメータとして蛍光一分子の発した総フォトン数(''N<sub>m</sub>'')・画像の1ピクセルのサイズ(''a'')・バックグラウンドの総フォトン数(''b<sub>m</sub>'')を用いる。<br>
解析で得られる(''x<sub>m</sub>'',''y<sub>m</sub>'')が推定された分子の座標、''w<sub>m</sub>''は輝点の広がり具合に相当し、以下の式から推定した座標の「不確かさ(σ<sub>''x,y''</sub>)''<sub>m</sub>''」を計算する際に用いられる。他のパラメータとして蛍光一分子の発した総フォトン数(''N<sub>m</sub>'')・画像の1ピクセルのサイズ(''a'')・バックグラウンドの総フォトン数(''b<sub>m</sub>'')を用いる。<br>
  (σ<sub>''x,y''</sub><sup>2</sup>)''<sub>m</sub>'' = (''w<sub>m</sub>''<sup>2</sup> + ''a''<sup>2</sup>/12)/''N<sub>m</sub>'' + 4π<sup>1/2</sup>''w<sub>m</sub>''<sup>3</sup>''b<sub>m</sub>''<sup>2</sup>/''aN<sub>m</sub>''<sup>2</sup> </ref>。座標推定から構築した点は②の元の点に比べて小さくなるが、極小の一点として表されるわけではなく、この点もまた2次元のガウス関数の輝度分布として表わされる。解析により求められた「座標」と「不確かさ」がそれぞれこの2次元のガウス関数の中心と標準偏差になる。また各一分子の輝度の合計が等しくなるように規格化される。この結果、精度が高く推定された点は小さな明るい点として、精度が低く推定された点は大きな暗い点として局在画像上で表わされる。<br>
  (σ<sub>''x,y''</sub><sup>2</sup>)''<sub>m</sub>'' = (''w<sub>m</sub>''<sup>2</sup> + ''a''<sup>2</sup>/12)/''N<sub>m</sub>'' + 4π<sup>1/2</sup>''w<sub>m</sub>''<sup>3</sup>''b<sub>m</sub>''<sup>2</sup>/''aN<sub>m</sub>''<sup>2</sup> </ref>。座標推定から構築した点は②の元の点に比べて小さくなるが、極小の一点として表されるわけではなく、この点もまた2次元のガウス関数の輝度分布として表わされる。解析により求められた「座標」と「不確かさ」がそれぞれこの2次元のガウス関数の中心と標準偏差になる。また各一分子の輝度の合計が等しくなるように規格化される。この結果、精度が高く推定された点は小さな明るい点として、精度が低く推定された点は大きな暗い点として局在画像上で表わされる。<br>
'''④1-Nサイクルの積分によるPALM画像の構築''' 上記①~③操作を全てのPSFPがなくなるまで(Nサイクル)繰り返した後に、③で得られた画像を全て足し合わせる事でPALM画像が得られる<ref group="注">実際は全ての点をPALM画像に入れるのではなく、推定された座標の「不確かさ」やフィッティング誤差を指標とした"足切り"操作が行われる。</ref>。最終的に得られるPALM画像の輝度は「蛍光分子がその位置で見つかる可能性」に比例するので、PALM画像は分子の出現確率密度分布図に相当する。]]
'''④1-Nサイクルの積分によるPALM画像の構築''' 上記①~③操作を全てのPSFPがなくなるまで(Nサイクル)繰り返した後に、③で得られた画像を全て足し合わせる事でPALM画像が得られる<ref group="注">実際は全ての点をPALM画像に入れるのではなく、推定された座標の「不確かさ」やフィッティング誤差を指標とした"足切り"操作が行われる。</ref>。最終的に得られるPALM画像の輝度は「蛍光分子がその位置で見つかる確率」に相当するので、PALM画像は対象分子の出現確率密度分布と考えられる。]]


光学顕微鏡の空間分解能は先述のとおり2つの点光源を異なる点として区別する「2点分解能」で表現され、可視光では250 nm程度である。しかしながら、輝点が重ならないほど十分に離れていれば、それを2次元のガウス関数で解析する事で最大1 nm程度の精度でその位置を推定できる。このような蛍光一分子の正確な位置解析は現在FIONA(Fluorescence imaging with one-nanometer accuracy)という名前で知られている<ref><pubmed> 12791999 </pubmed></ref>。Localization microscopy(蛍光一分子局在化顕微鏡法)は、FIONAを利用し光学顕微鏡の分解能を超えた画像を取得する方法である。このようなアイディアは古くから提案されていたが<ref><pubmed> 19859146 </pubmed></ref>、理想的なサンプルを作成するのが困難なため実現はされなかった。例えばGFPを興味のあるタンパク質と融合させ、それを発現した細胞を想定する。この細胞にFIONAを適用しようとすると、ほぼ確実に以下の問題が生じる。<br>
光学顕微鏡の空間分解能は先述のとおり2つの点光源を異なる点として区別する「2点分解能」で表現され、可視光では250 nm程度である。しかしながら、輝点が重ならないほど十分に離れていれば、それを2次元のガウス関数で解析する事で最大1 nm程度の精度でその位置を推定できる。このような蛍光一分子の正確な位置解析は現在FIONA(Fluorescence imaging with one-nanometer accuracy)という名前で知られている<ref><pubmed> 12791999 </pubmed></ref>。Localization microscopy(蛍光一分子局在化顕微鏡法)は、FIONAを利用し光学顕微鏡の分解能を超えた画像を取得する方法である。このようなアイディアは古くから提案されていたが<ref><pubmed> 19859146 </pubmed></ref>、理想的なサンプルを作成するのが困難なため実現はされなかった。例えばGFPを興味のあるタンパク質と融合させ、それを発現した細胞を想定する。この細胞にFIONAを適用しようとすると、ほぼ確実に以下の問題が生じる。<br>
# 発現しているGFPの数が多いため、隣り合ったGFPの輝点が重なりあってしまいFIONAを適用できない。
# 発現しているGFPの数が多いため、隣り合ったGFPの輝点が重なりあってしまい各輝点を区別できない。
# 上記の状況を回避するために輝点の重なりが無い程度に一つの細胞にGFPを極少なく発現させる事は困難である。
# 1.の状況を回避するために輝点の重なりが無い程度に一つの細胞にGFPを極少なく発現させる事は困難である。
# 上記が仮に達成できたとしても数個のGFPの詳細位置がわかるだけであり、分子の局在情報としては不十分である。
# 2.のような疎らな発現を仮に達成しても、数個のGFPの詳細位置がわかるだけであり分子の局在情報として不十分である。
蛍光一分子局在化顕微鏡法は、ある種の蛍光色素が特定条件下で蛍光状態(オン・オフ)や蛍光色が切り替わる性質を巧みに利用しこれらの問題を回避する事で成立した。代表的なものについて以下の項目で紹介する。
蛍光一分子局在化顕微鏡法は、ある種の蛍光色素が特定条件下で蛍光状態(オン・オフ)や蛍光色が切り替わる性質を巧みに利用しこれらの問題を回避する事で成立した。代表的なものについて以下の項目で紹介する。


84行目: 84行目:


====<small>STORM</small>====
====<small>STORM</small>====
STORM(Stochastic optical reconstruction microscopy)もPALM・FPALMと同時期に発表された<ref><pubmed> 16896339 </pubmed></ref>。STORMではある種の蛍光色素が特定の条件下で可逆的に暗状態(蛍光状態=オフ)へと遷移する現象を利用している。詳細には、シアニン系色素(例:Cy5)に強い励起光(赤色)を与えた際に、一定の確率で寿命の非常に長い暗状態に入る<ref group="注">この暗状態は寿命が1時間程度とされる。三重項状態の消光剤として働く酸素分子は暗状態の寿命を短くするため、暗状態へは三重項状態から遷移すると予想される。観察時に酸素除去剤を加える必要があるのはこのためである。また、この暗状態はチオールとの結合により起こるため、還元剤を培地へ添加する場合もある</ref><ref><pubmed> 15783528 </pubmed></ref><ref><pubmed> 19961226 </pubmed></ref>。暗状態において、より蛍光波長の短い別のシアニン系色素(例:Cy3)が近接している際にCy3への励起光(緑色)を与えるとCy5が基底状態(蛍光状態=オン)へ回復する<ref><pubmed> 15783528 </pubmed></ref>。オンになったCy5は強い励起光(赤色)を与えられ蛍光観察に利用される。蛍光観察中にある確率で暗状態(オフ)へと遷移する。Cy5が基底状態へ回復する確率はCy3に与える励起光(緑色)の強度と照射時間とにおよそ比例するので、PALMと同様に励起光(緑色)を適切にコントロールする事で常に視野内の疎らCy5がオンに保たれる。<br>
STORM(Stochastic optical reconstruction microscopy)もPALM・FPALMと同時期に発表された<ref><pubmed> 16896339 </pubmed></ref>。STORMではある種の蛍光色素が特定の条件下で可逆的に暗状態(蛍光状態=オフ)へと遷移する現象を利用している。詳細には、シアニン系色素(例:Cy5)に強い励起光(赤色)を与えた際に、一定の確率で寿命の非常に長い暗状態に入る<ref group="注">この暗状態は寿命が1時間程度とされる。三重項状態の消光剤として働く酸素分子は暗状態の寿命を短くするため、暗状態へは三重項状態から遷移すると予想される。観察時に酸素除去剤を加える必要があるのはこのためである。また、この暗状態はチオールとの結合により起こるため、還元剤を培地へ添加する場合もある。</ref><ref><pubmed> 15783528 </pubmed></ref><ref><pubmed> 19961226 </pubmed></ref>。暗状態において、より蛍光波長の短い別のシアニン系色素(例:Cy3)が近接している際にCy3への励起光(緑色)を与えるとCy5が基底状態(蛍光状態=オン)へ回復する<ref><pubmed> 15783528 </pubmed></ref>。オンになったCy5は強い励起光(赤色)を与えられ蛍光観察に利用される。蛍光観察中にある確率で暗状態(オフ)へと遷移する。Cy5が基底状態へ回復する確率はCy3に与える励起光(緑色)の強度と照射時間とにおよそ比例するので、PALMと同様に励起光(緑色)を適切にコントロールする事で常に視野内の疎らCy5がオンに保たれる。<br>


====<small>dSTORM,GSDIM</small>====
====<small>dSTORM,GSDIM</small>====
蛍光一分子局在化顕微鏡法では利用可能な蛍光色素が限られているのに加え、STORMでは超解像画像を得るために2つの蛍光色素を必要とするため、マルチカラー化は容易ではなかった。その後に報告されたdSTORM (direct STORM)<ref><pubmed> 18646237 </pubmed></ref>やGSDIM(Ground-state depletion  
蛍光一分子局在化顕微鏡法では利用可能な蛍光色素が限られているのに加え、STORMでは超解像画像を得るために2つの蛍光色素を必要とするため、マルチカラー化は容易ではなかった。その後に報告されたdSTORM (direct STORM)<ref><pubmed> 18646237 </pubmed></ref>やGSDIM(Ground-state depletion  
and single-molecule return)<ref><pubmed> 18794861 </pubmed></ref>ではこの問題が解決された。これらの方法では、蛍光色素の暗状態からの回復が別の蛍光色素の近接や励起光無しでもある確率で(稀にではあるが)起こる事を利用する。そのためCy3とその励起光(緑色)無しにも、視野内で疎らなCy5がオンになる。こうして1つの蛍光色素で超解像画像が得られるようになりマルチカラー化が容易となった。<br>
and single-molecule return)<ref><pubmed> 18794861 </pubmed></ref>ではこの問題が解決された。これらの方法では、蛍光色素の暗状態からの回復が別の蛍光色素の近接や励起光無しでも、ある確率で(稀にではあるが)起こる事を利用する。この場合、Cy3とその励起光(緑色)無しにも、視野内で疎らなCy5がオンになる。こうして1つの蛍光色素で超解像画像が得られるようになりマルチカラー化が容易となった。<br>


====<small>その他の方法</small>====
====<small>その他の方法</small>====
41

回編集

案内メニュー