「脳波」の版間の差分

ナビゲーションに移動 検索に移動
18 バイト追加 、 2018年10月1日 (月)
編集の要約なし
編集の要約なし
編集の要約なし
14行目: 14行目:
== 発生機序 ==
== 発生機序 ==
ある神経細胞の活動電位が軸索を通ってシナプスに達すると、神経伝達物質を介して他の神経細胞へと情報が伝達される。この結果シナプス後細胞のシナプス後膜に発生する電位をシナプス後電位という。これにより細胞内に電流が生じ、双極子となる。大脳皮質のニューロン集団がその周波数帯域で局所的に同期して周期的な活動すると、多数の同一双極子が並ぶことになり、空間的に加重した電場が細胞外にできる。脳波は、この電場電位の変化を頭皮上で観測したものである。実際には、細胞外電流が神経路以外の髄液や頭蓋骨を伝わる体積伝導(volume conduction)を経て頭皮上で計測される。髄液は高い電導性をもち、電流は広範囲に広がってしまう(シャント効果)ため、空間情報は劣化する。また、頭蓋骨の低電導性によって大きく信号は減衰されるため、高いS/N比を得るためには計測装置の磁場や漏れ電流などによる外乱ノイズを可能な限り無くすことが望ましい。<br>
ある神経細胞の活動電位が軸索を通ってシナプスに達すると、神経伝達物質を介して他の神経細胞へと情報が伝達される。この結果シナプス後細胞のシナプス後膜に発生する電位をシナプス後電位という。これにより細胞内に電流が生じ、双極子となる。大脳皮質のニューロン集団がその周波数帯域で局所的に同期して周期的な活動すると、多数の同一双極子が並ぶことになり、空間的に加重した電場が細胞外にできる。脳波は、この電場電位の変化を頭皮上で観測したものである。実際には、細胞外電流が神経路以外の髄液や頭蓋骨を伝わる体積伝導(volume conduction)を経て頭皮上で計測される。髄液は高い電導性をもち、電流は広範囲に広がってしまう(シャント効果)ため、空間情報は劣化する。また、頭蓋骨の低電導性によって大きく信号は減衰されるため、高いS/N比を得るためには計測装置の磁場や漏れ電流などによる外乱ノイズを可能な限り無くすことが望ましい。<br>
== 事象関連電位 ==
ヒトは特に何をしていなくても脳は常に自発的に活動しており、このときみられる脳波を背景脳波と呼ぶ。一方、光や音といった刺激が入力されたときや自発的な運動準備・実行を行う際には、それに伴い脳波も変動する。たとえば何か注意を払っていた視覚情報を近くした際には、その視覚提示の約300ミリ秒後に陽性の振幅変動が生じるP300というERPがある(hoge)。このように事象に関連して生じる一過性の電位変化を事象関連電位(Event-related potential: ERP)と呼ぶ。このERPは数マイクロボルトと非常に小さい変動であり、この誘発電位は背景脳波に埋もれてしまう。背景脳波からERPを抽出するためには、複数回施行を繰り返し行い計測した脳波を特定の事象の開始時点を揃えて加算平均する必要がある。これにより、事象に対して一定の時間関係を持ったERP成分だけが残り、背景ノイズは互いに相殺し合うことになる。<br>
== 脳波リズム ==
脳波はその振幅情報だけでなく、その律動的なリズムも認知機能に関与することが示唆されている。たとえば、運動に関連してμ波リズム(α波とほぼ同一周波数帯域)のパワー値が減衰するmu-suppression (Pfurtscheller et al., 1977)という現象がある。このように事象に関連してある周波数帯域のパワー値が減衰する現象を事象関連脱同期(event-related desynchronization: ERD)と呼び,逆にパワー値が増強する現象を事象関連同期(event-related synchronization: ERS)と呼ぶ。<br>
近年では、周波数成分の位相情報に注目したネットワーク解析が行われるようになってきた。Hogeら()は,二値化された顔の画像を実験参加者に提示したところ,その画像が顔であると近くしたときに脳波の位相が大域的に同期することを発見した。このように、離れた領域間での脳波リズムの位相同期が情報統合に重要な役割を果たすと考えられている(Varela et al., 2000)。<br>




36行目: 29行目:
=== 入力インピーダンス ===
=== 入力インピーダンス ===
脳波計測では、脳を生体電源として抵抗をかませた回路をつくり、オームの法則から抵抗の前後における電位差を測る。しかし実際には生体内部で合計数十kΩにもなる抵抗が生じる。これは変動する可能性があり、測定はできない。これによって回路内に用意した抵抗にかかる電圧が生体電源電圧と等しくならず、正しい計測ができない。この生体内のインピーダンスを無視するために、回路に組み込んだ抵抗、つまり脳波計の入力端子間における入力インピーダンスを高くする必要がある(10MΩ以上)。生体側のインピーダンスよりも入力インピーダンスが十分に高ければ、抵抗の両端で生じる電位差を脳で生じた電圧とほぼ等しいとみなすことができる。<br> 生体信号の記録には、Ag/AgCl電極の電気特性が最も良いといわれている。Ag/AgCl電極では、数秒間にわたる緩やかな電位変化を記録することができる。ただし、脳波計の入力インピーダンスが十分に高ければ、電極の種類によらず歪のない計測ができるといわれている。電極を頭皮に接地する際には、頭皮との間に導電性のゲルを埋めて電気的に接触させる。この電極と頭皮における接触抵抗は、S/N比の高い脳波計測をするうえで非常に重要になってくる。接触抵抗が高いと信号が減衰してしまうため、頭皮の角質を落とすといった前処理で下げる必要がある。接触抵抗は電極間に交流電流を流した際の電極間インピーダンスとして計測が可能であり、これが一般的に言われる電極インピーダンスである。電極インピーダンスは5kΩ以下にすることが望ましいとされ、電極インピーダンスはできるだけ一様に下げることが望ましい。電極インピーダンスの値が揃っていれば差動増幅器(脳波計)の特性によって同相信号が除去されるため、電源ラインから混入する交流障害(ハム)の影響を少なくすることができる。<br> 入力インピーダンスは脳波計の性能次第であるが、接触インピーダンスは計測者の前処理によって下げる必要がある。ボルテージフォロワのような回路が仕込まれている電極では、電極ごとの接触インピーダンスに応じて入力インピーダンスを上げることができる。この電極を能動電極(アクティブ電極)とよび、対照的に回路が組み込まれていな電極をパッシブ電極と呼ぶ。<br>
脳波計測では、脳を生体電源として抵抗をかませた回路をつくり、オームの法則から抵抗の前後における電位差を測る。しかし実際には生体内部で合計数十kΩにもなる抵抗が生じる。これは変動する可能性があり、測定はできない。これによって回路内に用意した抵抗にかかる電圧が生体電源電圧と等しくならず、正しい計測ができない。この生体内のインピーダンスを無視するために、回路に組み込んだ抵抗、つまり脳波計の入力端子間における入力インピーダンスを高くする必要がある(10MΩ以上)。生体側のインピーダンスよりも入力インピーダンスが十分に高ければ、抵抗の両端で生じる電位差を脳で生じた電圧とほぼ等しいとみなすことができる。<br> 生体信号の記録には、Ag/AgCl電極の電気特性が最も良いといわれている。Ag/AgCl電極では、数秒間にわたる緩やかな電位変化を記録することができる。ただし、脳波計の入力インピーダンスが十分に高ければ、電極の種類によらず歪のない計測ができるといわれている。電極を頭皮に接地する際には、頭皮との間に導電性のゲルを埋めて電気的に接触させる。この電極と頭皮における接触抵抗は、S/N比の高い脳波計測をするうえで非常に重要になってくる。接触抵抗が高いと信号が減衰してしまうため、頭皮の角質を落とすといった前処理で下げる必要がある。接触抵抗は電極間に交流電流を流した際の電極間インピーダンスとして計測が可能であり、これが一般的に言われる電極インピーダンスである。電極インピーダンスは5kΩ以下にすることが望ましいとされ、電極インピーダンスはできるだけ一様に下げることが望ましい。電極インピーダンスの値が揃っていれば差動増幅器(脳波計)の特性によって同相信号が除去されるため、電源ラインから混入する交流障害(ハム)の影響を少なくすることができる。<br> 入力インピーダンスは脳波計の性能次第であるが、接触インピーダンスは計測者の前処理によって下げる必要がある。ボルテージフォロワのような回路が仕込まれている電極では、電極ごとの接触インピーダンスに応じて入力インピーダンスを上げることができる。この電極を能動電極(アクティブ電極)とよび、対照的に回路が組み込まれていな電極をパッシブ電極と呼ぶ。<br>
== 解析 ==
=== 事象関連電位 ===
ヒトは特に何をしていなくても脳は常に自発的に活動しており、このときみられる脳波を背景脳波と呼ぶ。一方、光や音といった刺激が入力されたときや自発的な運動準備・実行を行う際には、それに伴い脳波も変動する。たとえば何か注意を払っていた視覚情報を近くした際には、その視覚提示の約300ミリ秒後に陽性の振幅変動が生じるP300というERPがある(hoge)。このように事象に関連して生じる一過性の電位変化を事象関連電位(Event-related potential: ERP)と呼ぶ。このERPは数マイクロボルトと非常に小さい変動であり、この誘発電位は背景脳波に埋もれてしまう。背景脳波からERPを抽出するためには、複数回施行を繰り返し行い計測した脳波を特定の事象の開始時点を揃えて加算平均する必要がある。これにより、事象に対して一定の時間関係を持ったERP成分だけが残り、背景ノイズは互いに相殺し合うことになる。<br>
=== 脳波リズム ===
脳波はその振幅情報だけでなく、その律動的なリズムも認知機能に関与することが示唆されている。たとえば、運動に関連してμ波リズム(α波とほぼ同一周波数帯域)のパワー値が減衰するmu-suppression (Pfurtscheller et al., 1977)という現象がある。このように事象に関連してある周波数帯域のパワー値が減衰する現象を事象関連脱同期(event-related desynchronization: ERD)と呼び,逆にパワー値が増強する現象を事象関連同期(event-related synchronization: ERS)と呼ぶ。<br>
近年では、周波数成分の位相情報に注目したネットワーク解析が行われるようになってきた。Hogeら()は,二値化された顔の画像を実験参加者に提示したところ,その画像が顔であると近くしたときに脳波の位相が大域的に同期することを発見した。このように、離れた領域間での脳波リズムの位相同期が情報統合に重要な役割を果たすと考えられている(Varela et al., 2000)。<br>
42

回編集

案内メニュー