「ゲノム編集」の版間の差分

ナビゲーションに移動 検索に移動
152行目: 152行目:
 生体における遺伝子ノックアウトは、標的遺伝子に対するガイドRNAとCas9のcDNAを、様々な臓器に導入し、非相同末端結合(NHEJ)を利用した修復により可能である。しかし、標的部位への遺伝子ノックインには、相同組換えを利用した修復が必要である。神経細胞などの非分裂細胞は、相同組換え活性が低く、従来の遺伝子ノックイン技術を適用することは難しい。最近、非分裂細胞に効率よく遺伝子をノックインできる技術が開発されたので、以下に2つの新技術を概説する。ゲノム編集に必要な核酸を生体に導入する方法として、[[アデノ随伴ウイルスベクター]]を用いる方法、電気穿孔法、[[ハイドロダイナッミク法]]などがある。ハイドロダイナッミク法は肝臓でのゲノム編集に用いられるが<ref>'''Ibraheim E, Song CQ, Mir A, Amrani N, Xue W, Sontheimer EJ.'''<br>All-in-One adeno-associated virus delivery and genome editing. <br>bioRxiv Posted April 4, 2018</ref>、脳でのゲノム編集は主にアデノ随伴ウイルスベクターを用いる方法と電気穿孔法が用いられる。
 生体における遺伝子ノックアウトは、標的遺伝子に対するガイドRNAとCas9のcDNAを、様々な臓器に導入し、非相同末端結合(NHEJ)を利用した修復により可能である。しかし、標的部位への遺伝子ノックインには、相同組換えを利用した修復が必要である。神経細胞などの非分裂細胞は、相同組換え活性が低く、従来の遺伝子ノックイン技術を適用することは難しい。最近、非分裂細胞に効率よく遺伝子をノックインできる技術が開発されたので、以下に2つの新技術を概説する。ゲノム編集に必要な核酸を生体に導入する方法として、[[アデノ随伴ウイルスベクター]]を用いる方法、電気穿孔法、[[ハイドロダイナッミク法]]などがある。ハイドロダイナッミク法は肝臓でのゲノム編集に用いられるが<ref>'''Ibraheim E, Song CQ, Mir A, Amrani N, Xue W, Sontheimer EJ.'''<br>All-in-One adeno-associated virus delivery and genome editing. <br>bioRxiv Posted April 4, 2018</ref>、脳でのゲノム編集は主にアデノ随伴ウイルスベクターを用いる方法と電気穿孔法が用いられる。


 生体におけるゲノム編集は、疾患の悪化に関与する遺伝子の破壊あるいは変異遺伝子の修復により、いままで治療法のなかった精神神経疾患に新しい治療法を提供する可能性を持っている。筋ジストロフィーの新しい治療法として、[[アンチセンスオリゴヌクレオチド]]を用いた[[exon skipping]](変異のあるエクソンを飛ばして、多少短くなるがある程度機能のある原因遺伝子ジストロフィンを産生させる方法)が注目されている。しかし、exon skippingの効率や副作用など、多くの克服すべき課題が多い。そこで、アンチセンスオリゴヌクレオチドの代わりにCRISPR/Cas9を用いてexon skippingを起こさせる試みが[[デュシャンヌ型筋ジストロフィー]](DMD)のモデルマウスを用いて行われた。米国の3つの研究グループは、ほぼ同時に、CRISPR/Cas9を使ってDMDモデルマウスのジストロフィン遺伝子の変異部分のみを切除し、機能的なジストロフィンを生成させ、筋力を回復させることに成功した<ref><pubmed>26721683</pubmed></ref><ref><pubmed>26721684</pubmed></ref><ref><pubmed>26721686</pubmed></ref>。患者を対象とした臨床治験を始めるには、CRISPR/Cas9の効率向上、骨格筋へのデリバリー法の開発、免疫原性など克服すべき課題も多いが、''in vivo''でのゲノム編集が有効なことを示した成果である。
 生体におけるゲノム編集は、疾患の悪化に関与する遺伝子の破壊あるいは変異遺伝子の修復により、いままで治療法のなかった精神神経疾患に新しい治療法を提供する可能性を持っている。筋ジストロフィーの新しい治療法として、[[アンチセンスオリゴヌクレオチド]]を用いた[[exon skipping]](変異のあるエクソンを飛ばして、多少短くなるがある程度機能のある原因遺伝子ジストロフィンを産生させる方法)が注目されている。しかし、exon skippingの効率や副作用など、多くの克服すべき課題が多い。そこで、アンチセンスオリゴヌクレオチドの代わりにCRISPR/Cas9を用いてexon skippingを起こさせる試みが[[デュシャンヌ型筋ジストロフィー]](DMD)のモデルマウスを用いて行われた。米国の3つの研究グループは、ほぼ同時に、CRISPR/Cas9を使ってDMDモデルマウスのジストロフィン遺伝子の変異部分のみを切除し、機能的なジストロフィンを生成させ、筋力を回復させることに成功した<ref><pubmed>26721683</pubmed></ref><ref><pubmed>26721684</pubmed></ref><ref><pubmed>26721686</pubmed></ref>。患者を対象とした臨床治験を始めるには、CRISPR/Cas9の効率向上、骨格筋へのデリバリー法の開発、免疫原性<ref><pubmed> 31015529 </pubmed></ref>など克服すべき課題も多いが、''in vivo''でのゲノム編集が有効なことを示した成果である。
 


===== 非相同末端結合を利用した遺伝子ノックイン=====
===== 非相同末端結合を利用した遺伝子ノックイン=====
159行目: 158行目:


===== 相同組換えを利用した遺伝子ノックイン =====
===== 相同組換えを利用した遺伝子ノックイン =====
 神経細胞は分裂を行っていない細胞なので、相同組換えを利用した遺伝子ノックインをすることは困難であった。これを克服する方法としてSLENDR(single-cell labeling of endogenous proteins by CRISPR-Cas9-mediated homology-directed repair)法が開発された。SLENDR法では、分裂能を持つ神経前駆細胞に、標的部位のDNA二本鎖切断に必要なガイドRNA、Cas9のcDNA、相同性を持つ外来遺伝子を子宮内電気穿孔法を用い導入する。この方法を用い標的遺伝子にタグ配列を挿入することができ、免疫組織化学に適した抗体のない遺伝子でもその局在を解析することができる[56]。さらに最近、挿入する外来遺伝子をアデノ随伴ウイルスベクターを用い脳に導入することにより、相同組換えによるノックイン効率が高くなることが報告された<ref><pubmed>29056297</pubmed></ref>。標的部位のDNA二本鎖切断に必要なguide RNA、Cas9のcDNA、相同性を持つ外来遺伝子をアデノ随伴ウイルスベクターに組み込み、脳へ局所注入することにより、HITI法と同等な効率で狙った部位に遺伝子をノックインできる。
 神経細胞は分裂を行っていない細胞なので、相同組換えを利用した遺伝子ノックインをすることは困難であった。これを克服する方法としてSLENDR(single-cell labeling of endogenous proteins by CRISPR-Cas9-mediated homology-directed repair)法が開発された。SLENDR法では、分裂能を持つ神経前駆細胞に、標的部位のDNA二本鎖切断に必要なガイドRNA、Cas9のcDNA、相同性を持つ外来遺伝子を子宮内電気穿孔法を用い導入する。この方法を用い標的遺伝子にタグ配列を挿入することができ、免疫組織化学に適した抗体のない遺伝子でもその局在を解析することができる<ref><pubmed> 27180908 </pubmed></ref>。さらに最近、挿入する外来遺伝子をアデノ随伴ウイルスベクターを用い脳に導入することにより、相同組換えによるノックイン効率が高くなることが報告された<ref><pubmed>29056297</pubmed></ref>。標的部位のDNA二本鎖切断に必要なguide RNA、Cas9のcDNA、相同性を持つ外来遺伝子をアデノ随伴ウイルスベクターに組み込み、脳へ局所注入することにより、HITI法と同等な効率で狙った部位に遺伝子をノックインできる。


=====不活性型Cas9を用いた遺伝子の転写制御=====
=====不活性型Cas9を用いた遺伝子の転写制御=====
 ガイドRNAとは複合体を形成できるがヌクレアーゼ活性を持たない不活性型Cas9 (dCas9)に転写抑制因子KRABを融合し (dCas9-KRAB)、標的ゲノム部位と相補的配列を持つガイドRNAと伴にレンチウイルスベクターを用い脳に導入することにより、標的遺伝子の発現を効率よくノックダウンできることが報告された (CRISPRi)[58]。また、dCas9に3種類の転写活性化因子(VP64、p65、Rta)を融合し (dCas9-VPR)、標的遺伝子の転写開始点に近接した領域に設計したガイドRNAと伴にレンチウイルスベクターを用い脳に導入することにより、標的遺伝子の転写を活性化できることも報告された (CRISPRa)[59]。CRISPRiおよびCRISPRaとも、ガイドRNAを複数導入することにより、同時に複数の遺伝子の転写制御が可能である。さらに、細胞種特異的プロモーターを用いdCas9-KRABあるいはdCas9-VPRを特定の細胞種に発現させることにより、細胞特異的な転写制御が可能であり、従来の細胞種特異的遺伝子欠損マウスで必要なマウスの交配を省略することができる。
 ガイドRNAとは複合体を形成できるがヌクレアーゼ活性を持たない不活性型Cas9 (dCas9)に転写抑制因子KRABを融合し (dCas9-KRAB)、標的ゲノム部位と相補的配列を持つガイドRNAと伴にレンチウイルスベクターを用い脳に導入することにより、標的遺伝子の発現を効率よくノックダウンできることが報告された (CRISPRi<ref><pubmed> 29403034 </pubmed></ref>)。また、dCas9に3種類の転写活性化因子(VP64、p65、Rta)を融合し (dCas9-VPR)、標的遺伝子の転写開始点に近接した領域に設計したガイドRNAと伴にレンチウイルスベクターを用い脳に導入することにより、標的遺伝子の転写を活性化できることも報告された (CRISPRa)<ref><pubmed> 30863790 </pubmed></ref>。CRISPRiおよびCRISPRaとも、ガイドRNAを複数導入することにより、同時に複数の遺伝子の転写制御が可能である。さらに、細胞種特異的プロモーターを用いdCas9-KRABあるいはdCas9-VPRを特定の細胞種に発現させることにより、細胞特異的な転写制御が可能であり、従来の細胞種特異的遺伝子欠損マウスで必要なマウスの交配を省略することができる。


== ゲノム編集研究の今後 ==
== ゲノム編集研究の今後 ==

案内メニュー