16,039
回編集
細 (→縦緩和(T1緩和)) |
細編集の要約なし |
||
1行目: | 1行目: | ||
<div align="right"> | <div align="right"> | ||
<font size="+1">[http://researchmap.jp/kojifujimoto 藤本晃司]</font><br> | <font size="+1">[http://researchmap.jp/kojifujimoto 藤本晃司]</font><br> | ||
12行目: | 7行目: | ||
担当編集委員:[http://researchmap.jp/read0048432 定藤 規弘](自然科学研究機構生理学研究所 大脳皮質機能研究系)<br> | 担当編集委員:[http://researchmap.jp/read0048432 定藤 規弘](自然科学研究機構生理学研究所 大脳皮質機能研究系)<br> | ||
</div> | </div> | ||
英語名:magnetic resonance imaging 独:Magnetresonanztomographie 仏:imagerie par résonance magnétique | |||
英略号:MRI | |||
{{box|text= 地球上の生命体は、水分子、脂質やアミノ酸など、水素原子を含んだ数多くの化合物から構成されている。現在広く用いられているMRIは、これら化合物中の水素原子核(プロトン:物理学による定義)が有する小さな磁石としての性質(原子核スピン)と、これに外部から特定の電磁波を与えた際に生じる相互作用(核磁気共鳴現象)を利用して、(おもに)生命体内の情報を非侵襲的に画像化する手法である。アメリカ合衆国の化学者Paul Lauterburとイギリスの物理学者Peter MansfieldはMRIに関する発見により、2003年のノーベル生理学・医学賞を受賞した。}} | {{box|text= 地球上の生命体は、水分子、脂質やアミノ酸など、水素原子を含んだ数多くの化合物から構成されている。現在広く用いられているMRIは、これら化合物中の水素原子核(プロトン:物理学による定義)が有する小さな磁石としての性質(原子核スピン)と、これに外部から特定の電磁波を与えた際に生じる相互作用(核磁気共鳴現象)を利用して、(おもに)生命体内の情報を非侵襲的に画像化する手法である。アメリカ合衆国の化学者Paul Lauterburとイギリスの物理学者Peter MansfieldはMRIに関する発見により、2003年のノーベル生理学・医学賞を受賞した。}} | ||
51行目: | 50行目: | ||
前述の''T<sub>2</sub>''緩和に加え、現実のMRI環境では、励起されたスピン集団の外部磁場は場所により少しずつ異なる(ただしここでは緩和過程中の時間変動はないものと仮定する)。結果として外部から観測される横磁化成分の減衰の早さは、静磁場の空間的分布の不均一性の強さ''∆B<sub>0</sub>'' および磁気回転比(gyromagnetic ratio γ)を用いて | 前述の''T<sub>2</sub>''緩和に加え、現実のMRI環境では、励起されたスピン集団の外部磁場は場所により少しずつ異なる(ただしここでは緩和過程中の時間変動はないものと仮定する)。結果として外部から観測される横磁化成分の減衰の早さは、静磁場の空間的分布の不均一性の強さ''∆B<sub>0</sub>'' および磁気回転比(gyromagnetic ratio γ)を用いて | ||
<math> | :::<math> | ||
\frac{1}{T_2^*}=\frac{1}{T_2}+\gamma\Delta B_0=\frac{1}{T_2}+\frac{1}{T_{B0inhomogeneity}} | \frac{1}{T_2^*}=\frac{1}{T_2}+\gamma\Delta B_0=\frac{1}{T_2}+\frac{1}{T_{B0inhomogeneity}} | ||
</math> | </math> | ||
65行目: | 64行目: | ||
MRIの測定信号(電磁波)の画像化の理解には、離散フーリエ変換(discrete Fourier transform, DFT)の原理の理解が重要であるため簡単に説明する。フランスの数学者ジョゼフ・フーリエは、あらゆる周期関数(や周期信号)は、三角級数の(無限の)和として表現できることを発見した。すなわち、実数xを変数とする周期2nの周期関数<math>f(x)</math>について、 | MRIの測定信号(電磁波)の画像化の理解には、離散フーリエ変換(discrete Fourier transform, DFT)の原理の理解が重要であるため簡単に説明する。フランスの数学者ジョゼフ・フーリエは、あらゆる周期関数(や周期信号)は、三角級数の(無限の)和として表現できることを発見した。すなわち、実数xを変数とする周期2nの周期関数<math>f(x)</math>について、 | ||
<math>a_n=\frac{1}{\pi}\int_{-\pi}^{\pi} f(t)</math>cos<math> nt\ dt,(n=0,1,2,3,\ldots)</math> | :::<math>a_n=\frac{1}{\pi}\int_{-\pi}^{\pi} f(t)</math>cos<math> nt\ dt,(n=0,1,2,3,\ldots)</math> | ||
<math>b_n=\frac{1}{\pi}\int_{-\pi}^{\pi} f(t)</math>sin<math> nt\ dt,(n=0,1,2,3,\ldots)</math> | :::<math>b_n=\frac{1}{\pi}\int_{-\pi}^{\pi} f(t)</math>sin<math> nt\ dt,(n=0,1,2,3,\ldots)</math> | ||
と置くと、 | と置くと、 | ||
<math>f(x)=\frac{a_0}{2}+\sum_{n=1}^{\infty}(a_n</math>cos<math>nx+b_n</math>sin<math>nx)</math> | :::<math>f(x)=\frac{a_0}{2}+\sum_{n=1}^{\infty}(a_n</math>cos<math>nx+b_n</math>sin<math>nx)</math> | ||
と書ける。これを複素数に拡張すれば、 | と書ける。これを複素数に拡張すれば、 | ||
<math>c_n=\frac{1}{2\pi}\int_{-\pi}^\pi f(t) e^{-\iota nt} dt,\ (n=0,\pm1,\pm2,\ldots)</math> | :::<math>c_n=\frac{1}{2\pi}\int_{-\pi}^\pi f(t) e^{-\iota nt} dt,\ (n=0,\pm1,\pm2,\ldots)</math> | ||
として | として | ||
<math>f(x)=\sum_{n=-\infty}^{\infty}(c_n e^{-ixn})</math> | :::<math>f(x)=\sum_{n=-\infty}^{\infty}(c_n e^{-ixn})</math> | ||
と書ける。 | と書ける。 | ||
f(x)がデジタル信号で離散化できる場合、上記のフーリエ級数表現を2次元、かつ複素数に拡張したものは以下のようにあらわすことができる(離散フーリエ変換, discrete Fourier transform, DFT) | |||
<math>F(u,v)=\sum_{x=0}^{M-1}\sum_{y=0}^{M-1}f(x,y)e^{-\iota 2\pi(\frac {u}{M}x+\frac{v}{N} y)}</math> | :::<math>F(u,v)=\sum_{x=0}^{M-1}\sum_{y=0}^{M-1}f(x,y)e^{-\iota 2\pi(\frac {u}{M}x+\frac{v}{N} y)}</math> | ||
また、この逆変換にあたる逆離散フーリエ変換(inverse discrete Fourier transform, IDFT)は以下のようにかける | |||
<math>f(x,y)=\frac{1}{MN}\sum_{u=0}^{M-1}\sum_{v=0}^{N-1}F(u,v)e^{-\iota 2\pi(\frac {u}{M}x+\frac{v}{N} y)}</math> | :::<math>f(x,y)=\frac{1}{MN}\sum_{u=0}^{M-1}\sum_{v=0}^{N-1}F(u,v)e^{-\iota 2\pi(\frac {u}{M}x+\frac{v}{N} y)}</math> | ||
95行目: | 94行目: | ||
例えばu=1,v=0とした場合、 | 例えばu=1,v=0とした場合、 | ||
<math>F(1,-)=\sum_{x=0}^{M-1}\sum_{y=0}^{M-1}f(x,y)e^{-\iota 2\pi(\frac {1}{M}x)}</math> | :::<math>F(1,-)=\sum_{x=0}^{M-1}\sum_{y=0}^{M-1}f(x,y)e^{-\iota 2\pi(\frac {1}{M}x)}</math> | ||
となるが、これはMRIでは撮像領域(FOV)の右端から左端にかけて複素数の重み係数 | となるが、これはMRIでは撮像領域(FOV)の右端から左端にかけて複素数の重み係数 | ||
<math>e^{i\theta}=</math> cos <math>\theta + i</math>sin<math>\theta, \theta =[-\pi\ \pi]</math> | :::<math>e^{i\theta}=</math> cos <math>\theta + i</math>sin<math>\theta, \theta =[-\pi\ \pi]</math> | ||
を画像に乗じたのちに総和をとったことに等しい。同様に、u=2,v=0とした場合には、FOVの右端から左端にかけて<math>\theta =[-2\pi\ 2\pi]</math>の重み係数を乗じたのちに総和をとったことに等しい。 | を画像に乗じたのちに総和をとったことに等しい。同様に、u=2,v=0とした場合には、FOVの右端から左端にかけて<math>\theta =[-2\pi\ 2\pi]</math>の重み係数を乗じたのちに総和をとったことに等しい。 | ||
109行目: | 108行目: | ||
さまざまなMRI撮像法が提案されているが主な違いはRFパルスを照射する回数、タイミングや大きさ、傾斜磁場の印加法である。これら電磁波の照射の時系列制御がキーであるため撮像シークエンスとも呼ぶ。代表的なMRI撮像法を簡単に紹介する。 | さまざまなMRI撮像法が提案されているが主な違いはRFパルスを照射する回数、タイミングや大きさ、傾斜磁場の印加法である。これら電磁波の照射の時系列制御がキーであるため撮像シークエンスとも呼ぶ。代表的なMRI撮像法を簡単に紹介する。 | ||
=== スピンエコー法 === | === スピンエコー法 === | ||
Spin echo | |||
励起のための電磁波(90°RFパルス)を与えたのちに、再度180°RFパルス(再収束パルス、refocus pulse)を与えることで、局所の静磁場の不均一性による位相分散の影響を取り除くことが出来る。 | 励起のための電磁波(90°RFパルス)を与えたのちに、再度180°RFパルス(再収束パルス、refocus pulse)を与えることで、局所の静磁場の不均一性による位相分散の影響を取り除くことが出来る。 | ||
=== グラジエントエコー法 === | === グラジエントエコー法 === | ||
Gradient echo | |||
励起のための電磁波(RFパルス)を与えたのちに、再収束パルスを与えず、勾配磁場を用いて信号を取り出す手法。局所の静磁場の不均一性による位相分散の影響を取り除くことは出来ないが、再収束パルスを必要としないため高速撮像に向く。また、後述のBOLD fMRIのように、(鉄などによる)局所の静磁場の不均一性を強調したい場合にも用いられる。 | 励起のための電磁波(RFパルス)を与えたのちに、再収束パルスを与えず、勾配磁場を用いて信号を取り出す手法。局所の静磁場の不均一性による位相分散の影響を取り除くことは出来ないが、再収束パルスを必要としないため高速撮像に向く。また、後述のBOLD fMRIのように、(鉄などによる)局所の静磁場の不均一性を強調したい場合にも用いられる。 | ||
=== エコープラナー法 === | === エコープラナー法 === | ||
Echo planar imaging, EPI | |||
一度のRFパルスの後、グラジエントエコー法あるいはスピンエコー法の信号収集時間を極端に延長し、読み出し傾斜磁場を急速に変動させることで連続的なグラジエントエコーを発生させ、画像化に必要なデータを全て収集してしまう方法。T2*緩和の影響が強く、かつ原理的にもっとも高速な撮像法の一つである。fMRIで利用されるBOLDコントラスト(後述)はT_2^*緩和に依存し、かつ高い時間分解能が必要とされるため、本手法が用いられる。 | 一度のRFパルスの後、グラジエントエコー法あるいはスピンエコー法の信号収集時間を極端に延長し、読み出し傾斜磁場を急速に変動させることで連続的なグラジエントエコーを発生させ、画像化に必要なデータを全て収集してしまう方法。T2*緩和の影響が強く、かつ原理的にもっとも高速な撮像法の一つである。fMRIで利用されるBOLDコントラスト(後述)はT_2^*緩和に依存し、かつ高い時間分解能が必要とされるため、本手法が用いられる。 | ||
== 主なMRIコントラスト == | == 主なMRIコントラスト == | ||
=== T1強調像 === | === T1強調像 === | ||
T1-weighted image, T1WI | |||
縦磁化が十分に回復しないうちに信号収集を行うことで、各組織における縦磁化回復の早さの違いを強調した画像が得られる。具体的にはスピンエコー法では励起から次の励起までの時間(repetition time, TR)および励起から収集までの時間(echo time, TE)を短くすることで、またグラジエントエコー法ではフリップ角(FA)を適度に大きく、TEを短くすることでT1強調像が得られる。 | 縦磁化が十分に回復しないうちに信号収集を行うことで、各組織における縦磁化回復の早さの違いを強調した画像が得られる。具体的にはスピンエコー法では励起から次の励起までの時間(repetition time, TR)および励起から収集までの時間(echo time, TE)を短くすることで、またグラジエントエコー法ではフリップ角(FA)を適度に大きく、TEを短くすることでT1強調像が得られる。 | ||
撮像部位に流入する血管内の血液が高信号を示すことを利用して、造影剤を用いずに脳血管を可視化する手法であるTime-of-flight (TOF)法では、グラジエントエコー法によるT1強調像が用いられる。 | 撮像部位に流入する血管内の血液が高信号を示すことを利用して、造影剤を用いずに脳血管を可視化する手法であるTime-of-flight (TOF)法では、グラジエントエコー法によるT1強調像が用いられる。 | ||
=== T2強調像 === | === T2強調像 === | ||
T2-weighted image, T2WI | |||
励起から収集までの時間(TE)を長くとれば、各組織における横磁化の減衰速度の違いを強調した画像が得られる。画像収集にスピンエコー法を用いた場合、得られる画像は時定数T2を強調した画像となる。 | 励起から収集までの時間(TE)を長くとれば、各組織における横磁化の減衰速度の違いを強調した画像が得られる。画像収集にスピンエコー法を用いた場合、得られる画像は時定数T2を強調した画像となる。 | ||
=== T2*強調像 === | === T2*強調像 === | ||
T2-star-weighted image, T2*WI | |||
TEを長くとり、画像収集にグラジエントエコー法を用いた場合、得られる画像はT2*強調像となる。得られた画像に特殊な画像処理を施すことで、磁化率強調像(susceptibility-weighted image, SWI)<ref name=Haacke2004><pubmed>15334582</pubmed></ref> や定量的磁化率マップ(quantitative susceptibility map, QSM)<ref name=Li2011><pubmed>21224002</pubmed></ref> といった画像が得られる。 | TEを長くとり、画像収集にグラジエントエコー法を用いた場合、得られる画像はT2*強調像となる。得られた画像に特殊な画像処理を施すことで、磁化率強調像(susceptibility-weighted image, SWI)<ref name=Haacke2004><pubmed>15334582</pubmed></ref> や定量的磁化率マップ(quantitative susceptibility map, QSM)<ref name=Li2011><pubmed>21224002</pubmed></ref> といった画像が得られる。 | ||
=== 拡散強調像 === | === 拡散強調像 === | ||
Diffusion-weighted image, DWI | |||
撮像の際に、数msから数十ms程度のごく短時間で反転する一組の強い勾配磁場、すなわち運動検出傾斜磁場(motion probing gradient, MPG)を追加することで水の動きを強調した画像。MPG を与えた方向に拡散する水由来の信号は低下する。脳梗塞を起こした部位では健常組織よりも水の拡散が制限されることが知られており、脳梗塞を早期に検出する手法として臨床で広く用いられている。6方向以上のMPGを用いてDWIを収集し、テンソルモデルを用いて撮像単位内に存在する水の動きやすさの「方向」を推定することも可能である(diffusion tensor imaging, DTI)。この推定値を用いて白質を通る神経線維の走行を推測する方法を拡散テンソルトラクトグラフィー(diffusion tensor tractography)と呼ぶ<ref name=Basser2000><pubmed>11025519</pubmed></ref><ref name=Melhem2002><pubmed>11756078</pubmed></ref> 。DTIは各ボクセル内に1種類の神経線維の存在を仮定しているため、神経線維が交叉する撮像単位での推定に限界があり、近年ではより高度なモデルを用いた解析手法も提唱されている(Diffusion spectrum imaging, DSIなど)<ref name=Wedeen2008><pubmed>18495497</pubmed></ref> 。 | 撮像の際に、数msから数十ms程度のごく短時間で反転する一組の強い勾配磁場、すなわち運動検出傾斜磁場(motion probing gradient, MPG)を追加することで水の動きを強調した画像。MPG を与えた方向に拡散する水由来の信号は低下する。脳梗塞を起こした部位では健常組織よりも水の拡散が制限されることが知られており、脳梗塞を早期に検出する手法として臨床で広く用いられている。6方向以上のMPGを用いてDWIを収集し、テンソルモデルを用いて撮像単位内に存在する水の動きやすさの「方向」を推定することも可能である(diffusion tensor imaging, DTI)。この推定値を用いて白質を通る神経線維の走行を推測する方法を拡散テンソルトラクトグラフィー(diffusion tensor tractography)と呼ぶ<ref name=Basser2000><pubmed>11025519</pubmed></ref><ref name=Melhem2002><pubmed>11756078</pubmed></ref> 。DTIは各ボクセル内に1種類の神経線維の存在を仮定しているため、神経線維が交叉する撮像単位での推定に限界があり、近年ではより高度なモデルを用いた解析手法も提唱されている(Diffusion spectrum imaging, DSIなど)<ref name=Wedeen2008><pubmed>18495497</pubmed></ref> 。 | ||
=== MRスペクトロスコピー === | === MRスペクトロスコピー === | ||
MR spectroscopy、MRS | MR spectroscopy、MRS | ||
MRSは、化合物に存在するプロトンの共鳴周波数が、水の水素原子の共鳴周波数とわずかに異なることを利用して、測定対象物の化合物を推定、あるいはその濃度を計測する手法である。脳MRSにおいては、シナプス間の情報伝達物質として最もポピュラーなグルタミン酸(glutamate)をはじめ、複数の神経伝達物質が計測のターゲットとなる。 | MRSは、化合物に存在するプロトンの共鳴周波数が、水の水素原子の共鳴周波数とわずかに異なることを利用して、測定対象物の化合物を推定、あるいはその濃度を計測する手法である。脳MRSにおいては、シナプス間の情報伝達物質として最もポピュラーなグルタミン酸(glutamate)をはじめ、複数の神経伝達物質が計測のターゲットとなる。 | ||
== 撮像高速化の手法 == | == 撮像高速化の手法 == | ||
=== パラレルイメージング === | === パラレルイメージング === | ||
Parallel imaging | |||
従来、撮像対象に対して一つの受信コイルを用いた撮像が行われていたが、1990年代に感度領域が限られた複数の受信コイルを並べて配置するアレイコイルと呼ばれる技術が開発された<ref name=Roemer1990><pubmed>2266841</pubmed></ref> 。コイルごとに少しずつ異なる感度分布をうまく利用することで、MRIの信号取得をスキップし、撮像時間を短縮する方法が開発された。この技術は複数の受信コイルを用いて同時(並列)に得られた信号を用いていることから、パラレルイメージングと呼ばれる。コイルの空間感度分布を用いる手法をsensitivity encoding (SENSE<ref name=Pruessmann1999><pubmed>10542355</pubmed></ref> 、コイルの空間感度分布を用いず、k-spaceにおける近傍点の相対的な関係をもとに重み係数を決定し欠損データを補完する手法をGeneRalized Autocalibrating Partial Parallel Acquisition(GRAPPA)と呼ぶ<ref name=Griswold2002><pubmed>12111967</pubmed></ref> | 従来、撮像対象に対して一つの受信コイルを用いた撮像が行われていたが、1990年代に感度領域が限られた複数の受信コイルを並べて配置するアレイコイルと呼ばれる技術が開発された<ref name=Roemer1990><pubmed>2266841</pubmed></ref> 。コイルごとに少しずつ異なる感度分布をうまく利用することで、MRIの信号取得をスキップし、撮像時間を短縮する方法が開発された。この技術は複数の受信コイルを用いて同時(並列)に得られた信号を用いていることから、パラレルイメージングと呼ばれる。コイルの空間感度分布を用いる手法をsensitivity encoding (SENSE<ref name=Pruessmann1999><pubmed>10542355</pubmed></ref> 、コイルの空間感度分布を用いず、k-spaceにおける近傍点の相対的な関係をもとに重み係数を決定し欠損データを補完する手法をGeneRalized Autocalibrating Partial Parallel Acquisition(GRAPPA)と呼ぶ<ref name=Griswold2002><pubmed>12111967</pubmed></ref> | ||
=== Multi-band/Simultaneous Multi-Slice撮像 === | === Multi-band/Simultaneous Multi-Slice撮像 === | ||
2010年にDavid Feinberg らは「スライス選択励起」RFパルスを工夫することで、複数のスライスをひとつのRFパルスで同時に励起する手法を開発し<ref name=Feinberg2010><pubmed>21187930</pubmed></ref> 、multiband MRI と名付けた。従来はEPIを用いて全脳を撮像するのに2-3秒程度必要であったが、multiband撮像を用いると1秒以内に全脳を撮像することが可能である。 | 2010年にDavid Feinberg らは「スライス選択励起」RFパルスを工夫することで、複数のスライスをひとつのRFパルスで同時に励起する手法を開発し<ref name=Feinberg2010><pubmed>21187930</pubmed></ref> 、multiband MRI と名付けた。従来はEPIを用いて全脳を撮像するのに2-3秒程度必要であったが、multiband撮像を用いると1秒以内に全脳を撮像することが可能である。 | ||
162行目: | 172行目: | ||
=== 血流動態応答 === | === 血流動態応答 === | ||
Hemodynamic response | |||
短時間の感覚刺激後に生じるBOLD MRI信号の経時変化を計測すると、刺激呈示から約2秒後に信号強度はベースラインを超え、約5-6秒後に最大値を示す。初期に1-2秒間の負のBOLD反応(イニシャルディップ、initial dip)が観測されることもある。神経活動が終わるとBOLD信号強度はベースラインより低下し、しばらくその状態が続く(アンダーシュート)。イニシャルディップに関しては、2010年のTianらのラットを対象とした研究によると、血管拡張が最も早い皮質最深部の層ではみとめられず、最も遅い最表層の皮質ではみとめられたことから、血流動態応答の前に生じる酸素消費の増加を反映する、という仮説が支持されている<ref name=Tian2010><pubmed>20696904</pubmed></ref> 。Duongらはネコの視覚野を対象とした実験で、イニシャルディップのほうが正のBOLD反応よりも空間選択性が高いという結果を示している<ref name=Duong2001><pubmed>11526212</pubmed></ref> 。 | 短時間の感覚刺激後に生じるBOLD MRI信号の経時変化を計測すると、刺激呈示から約2秒後に信号強度はベースラインを超え、約5-6秒後に最大値を示す。初期に1-2秒間の負のBOLD反応(イニシャルディップ、initial dip)が観測されることもある。神経活動が終わるとBOLD信号強度はベースラインより低下し、しばらくその状態が続く(アンダーシュート)。イニシャルディップに関しては、2010年のTianらのラットを対象とした研究によると、血管拡張が最も早い皮質最深部の層ではみとめられず、最も遅い最表層の皮質ではみとめられたことから、血流動態応答の前に生じる酸素消費の増加を反映する、という仮説が支持されている<ref name=Tian2010><pubmed>20696904</pubmed></ref> 。Duongらはネコの視覚野を対象とした実験で、イニシャルディップのほうが正のBOLD反応よりも空間選択性が高いという結果を示している<ref name=Duong2001><pubmed>11526212</pubmed></ref> 。 | ||
178行目: | 188行目: | ||
==参考文献== | ==参考文献== | ||
<references /> |