246
回編集
Masahitoyamagata (トーク | 投稿記録) 細編集の要約なし |
Masahitoyamagata (トーク | 投稿記録) 細編集の要約なし |
||
31行目: | 31行目: | ||
しかしながら、もっとも重要なscRNAseqの方法論についての進歩は、2015年、Harvard Medical Schoolの独立した2つのグループが、inDrops<ref><pubmed>26000487</pubmed></ref>そしてDrop-seq<ref><pubmed>26000488 </pubmed></ref>という類似した2つの高スループットな方法を開発したことであろう(inDropsはT7RNAポリメラーゼ、Drop-seqはPCRで増幅)。これらの方法では、[[マイクロ流体力学]] (Microfluidics) 、 UMI(上述)と細胞ごとのバーコード(Cell Barcode)という2種類のDNAバーコーディング、そしてNGSと情報解析を利用している。そして、多く細胞のサンプル調製の自動化と容易さから、1つの細胞あたりに要するコストを大幅に低下させることに成功した(Drop-seqは発表時で、1細胞あたり約5セント)。つまり、細胞1つずつをマイクロ流体力学によるエマルジョン技術を利用した装置に流入させ、その1細胞を1つのDroplet(油中水滴)に自動的に閉じ込める。そのDroplet中には、DropletごとにCell barcode/UMIとしてユニークなDNAバーコードを持つゲルビーズ(Gel Beads in Emulsion, GEMs)が入っており、それを足場に3’末端のみを標的にしたcDNA合成反応を実施することで、同じ細胞に含まれていたmRNAが同じCell barcodeを持つcDNAとして合成され、そのmRNA/cDNAが由来した細胞を識別できるということを利用している(図1)。 | しかしながら、もっとも重要なscRNAseqの方法論についての進歩は、2015年、Harvard Medical Schoolの独立した2つのグループが、inDrops<ref><pubmed>26000487</pubmed></ref>そしてDrop-seq<ref><pubmed>26000488 </pubmed></ref>という類似した2つの高スループットな方法を開発したことであろう(inDropsはT7RNAポリメラーゼ、Drop-seqはPCRで増幅)。これらの方法では、[[マイクロ流体力学]] (Microfluidics) 、 UMI(上述)と細胞ごとのバーコード(Cell Barcode)という2種類のDNAバーコーディング、そしてNGSと情報解析を利用している。そして、多く細胞のサンプル調製の自動化と容易さから、1つの細胞あたりに要するコストを大幅に低下させることに成功した(Drop-seqは発表時で、1細胞あたり約5セント)。つまり、細胞1つずつをマイクロ流体力学によるエマルジョン技術を利用した装置に流入させ、その1細胞を1つのDroplet(油中水滴)に自動的に閉じ込める。そのDroplet中には、DropletごとにCell barcode/UMIとしてユニークなDNAバーコードを持つゲルビーズ(Gel Beads in Emulsion, GEMs)が入っており、それを足場に3’末端のみを標的にしたcDNA合成反応を実施することで、同じ細胞に含まれていたmRNAが同じCell barcodeを持つcDNAとして合成され、そのmRNA/cDNAが由来した細胞を識別できるということを利用している(図1)。 | ||
なお、DropSeqはコストが低いが、細胞の取得率と検出感度が低い弱点がある。inDropsはDropSeqより細胞取得率が高く、パラメータを調整することにより、低レベルで発現される遺伝子の検出にも有利であるとされる<ref><pubmed>30472192</pubmed></ref> | なお、DropSeqはコストが低いが、細胞の取得率と検出感度が低い弱点がある。inDropsはDropSeqより細胞取得率が高く、パラメータを調整することにより、低レベルで発現される遺伝子の検出にも有利であるとされる<ref><pubmed>30472192</pubmed></ref>。DropSeqのセットアップはDolomite Bio ([https://www.dolomite-bio.com])、inDropは1 Cellbio社から販売されている[https://1cell-bio.com]。しかし、特に重要なのは10x Genomics社が同様の原理を用いた「Chromium」と命名された機器と試薬のシステムを市販することで、多くの研究者が容易に利用できることになったことである<ref><pubmed>28091601</pubmed></ref>[https://www.10xgenomics.com/jp/]。Svenssonらによる最近のデータベース[https://doi.org/10.1101/742304], [http://www.nxn.se/single-cell-studies/gui]では、scRNAseqを用いた論文で用いられた方法について調査しているが、この数年、10x Genomics社Chromiumを用いた論文が飛躍的に増加し、scRNAseqの方法として一般的になりつつあることがわかる(現在、10x Genomics社とBioRad社の間で関連特許をめぐる係争がある。)。このシステムは市販であるので導入が容易であり、DropSeqやinDropsに比べ多くの転写産物の高感度検出が可能であるが、ランニングコストは高い<ref><pubmed>30472192</pubmed></ref>。なお、3’エンドリード法だけでなく、N末端側に位置する抗体の可変領域などの検出には5’エンドリード法が利用されることがある。 | ||
[[ファイル:scFig1.jpg|サムネイル|300px|'''図1.Droplet使用の3’エンドリード法 '''<br>組織から解離させた細胞それぞれを、マイクロ流体力学を利用した装置で、バーコードプライマーが結合したゲルビーズとともにDropletに封じ込める。Droplet中には、DropletごとにCell barcode/UMIとしてユニークなDNA配列を持つゲルビーズ(GEMs)が入っており、それを足場にcDNA合成反応を実施することで、同じ細胞に含まれていたmRNAが同じCell barcodeを持つDNAとして合成され、それを増幅する。]] | |||
</pubmed></ref>[https://www.10xgenomics.com/jp/]。Svenssonらによる最近のデータベース[https://doi.org/10.1101/742304], [http://www.nxn.se/single-cell-studies/gui]では、scRNAseqを用いた論文で用いられた方法について調査しているが、この数年、10x Genomics社Chromiumを用いた論文が飛躍的に増加し、scRNAseqの方法として一般的になりつつあることがわかる(現在、10x Genomics社とBioRad社の間で関連特許をめぐる係争がある。)。このシステムは市販であるので導入が容易であり、DropSeqやinDropsに比べ多くの転写産物の高感度検出が可能であるが、ランニングコストは高い<ref><pubmed>30472192</pubmed></ref>。なお、3’エンドリード法だけでなく、N末端側に位置する抗体の可変領域などの検出には5’エンドリード法が利用されることがある。 | |||
[[ファイル:scFig1.jpg|サムネイル|300px|'''図1.Droplet使用の3’エンドリード法 '''<br> | |||
==scRNAseqの実際== | ==scRNAseqの実際== | ||
65行目: | 62行目: | ||
このようなノーマライゼーションの過程を経て<ref><pubmed>28504683</pubmed></ref>、scRNAseqのデータ解析において、最初に行うのが、[[次元圧縮]] (dimensionality reduction)である<ref><pubmed>30617341</pubmed></ref><ref><pubmed>31780648</pubmed></ref>。PCA (Principal component analysis, 主成分分析)、UMAP(Uniform Manifold Approximation and Projection, 均一マニフォールド近似と投影)、Diffusion maps<ref><pubmed> 26002886 | このようなノーマライゼーションの過程を経て<ref><pubmed>28504683</pubmed></ref>、scRNAseqのデータ解析において、最初に行うのが、[[次元圧縮]] (dimensionality reduction)である<ref><pubmed>30617341</pubmed></ref><ref><pubmed>31780648</pubmed></ref>。PCA (Principal component analysis, 主成分分析)、UMAP(Uniform Manifold Approximation and Projection, 均一マニフォールド近似と投影)、Diffusion maps<ref><pubmed> 26002886 | ||
</pubmed></ref>, tSNE(t-distributed Stochastic Neighbor Embedding , t分布型確率的近傍埋込み)などの手法が用いられる。 特に、tSNE[http://www.jmlr.org/papers/v9/vandermaaten08a.html]とUMAP[https://arxiv.org/abs/1802.03426]は、高次元データを低次元の点の集合として可視化することで、それぞれの細胞の持つトランスクリプトームの類似度についての直観的な表示が可能でありしばしば用いられる(図3)。tSNEよりUMAPの方が迅速に類似集団間の関係が明確になるので、最近はUMAPを利用することが多くなってきている。次に、[[Louvainアルゴリズム]]などでクラスタリング(コミュニティ分割)を行いグラフ上に表示できる(図3の色分け)。こうして、違ったタイプの細胞の集合が別のクラスターとして表示される。 | </pubmed></ref>, tSNE(t-distributed Stochastic Neighbor Embedding , t分布型確率的近傍埋込み)などの手法が用いられる。 特に、tSNE[http://www.jmlr.org/papers/v9/vandermaaten08a.html]とUMAP[https://arxiv.org/abs/1802.03426]は、高次元データを低次元の点の集合として可視化することで、それぞれの細胞の持つトランスクリプトームの類似度についての直観的な表示が可能でありしばしば用いられる(図3)。tSNEよりUMAPの方が迅速に類似集団間の関係が明確になるので、最近はUMAPを利用することが多くなってきている。次に、[[Louvainアルゴリズム]]などでクラスタリング(コミュニティ分割)を行いグラフ上に表示できる(図3の色分け)。こうして、違ったタイプの細胞の集合が別のクラスターとして表示される。 | ||
[[ファイル:scFig3.jpg|サムネイル|250px|''' | [[ファイル:scFig3.jpg|サムネイル|250px|'''図3. tSNEとUMAPによる同じデータの可視化'''<br>網膜(ニワトリ)の視細胞のデータを用いて執筆者が作製[https://doi.org/10.1101/2020.10.09.333633 | ||
}。]] | }。]] | ||
72行目: | 69行目: | ||
scRNAseqデータから得られる生物学的知見には、内在的に存在する細胞の種類、外部刺激や環境で変化した細胞の状態、そして種類や変化により特徴的に発現するマーカー遺伝子候補の発見がある<ref><pubmed>27824854</pubmed></ref><ref><pubmed>32033589</pubmed></ref> | scRNAseqデータから得られる生物学的知見には、内在的に存在する細胞の種類、外部刺激や環境で変化した細胞の状態、そして種類や変化により特徴的に発現するマーカー遺伝子候補の発見がある<ref><pubmed>27824854</pubmed></ref><ref><pubmed>32033589</pubmed></ref> | ||
。クラスタリングにより、異なった細胞集団の存在が認識されると、それぞれのクラスターに特徴的に発現している遺伝子を具体的に探索し、細胞集団の持つバイオマーカーによって、そのクラスターの同定が可能になる。例えば、既に神経細胞とグリア細胞に特異的に発現する典型的マーカーはよく知られており、それぞれのクラスターの識別は容易である。更に、神経細胞のタイプを区別できるマーカーや、外部刺激によって遺伝子発現が変化した神経細胞の状態は、In situ hybridizationや免疫組織化学などにより確認できる。このようなクラスターごとに発現が異なる遺伝子(差次的発現遺伝子)を見つけるためには(Differential expression analysis, DE analysis)、SeuratのFindMarkersコマンド中でも利用可能である専用コード(MAST <ref><pubmed>26653891</pubmed></ref>、DESeq2 <ref><pubmed>25516281</pubmed></ref>など)を用いることができる。scRNAseqの解析に必要なコードは、scRNA-tools [https://www.scrna-tools.org], Awesome single cell [https://github.com/seandavi/awesome-single-cell], Bioconductor[https://www.bioconductor.org]などで紹介されており、ほとんどがダウンロード可能である。また、最新の情報については、bioRxivなどのプレプリントサーバで公開されていることが多く、scRNAseqのデータ(下記参考)とともに、オープンサイエンス実践の好例となっている。細胞ごとの差次的発現遺伝子の可視化には、ドットプロット(dot plot)、ヴァイオリンプロット(violin plot)、リッジプロット(Ridge plot, joy plot)、UMAPなどの次元圧縮図に重ねるFeatureプロット(feature plot)などが、目的に応じて頻繁に用いられる(図4)。 | 。クラスタリングにより、異なった細胞集団の存在が認識されると、それぞれのクラスターに特徴的に発現している遺伝子を具体的に探索し、細胞集団の持つバイオマーカーによって、そのクラスターの同定が可能になる。例えば、既に神経細胞とグリア細胞に特異的に発現する典型的マーカーはよく知られており、それぞれのクラスターの識別は容易である。更に、神経細胞のタイプを区別できるマーカーや、外部刺激によって遺伝子発現が変化した神経細胞の状態は、In situ hybridizationや免疫組織化学などにより確認できる。このようなクラスターごとに発現が異なる遺伝子(差次的発現遺伝子)を見つけるためには(Differential expression analysis, DE analysis)、SeuratのFindMarkersコマンド中でも利用可能である専用コード(MAST <ref><pubmed>26653891</pubmed></ref>、DESeq2 <ref><pubmed>25516281</pubmed></ref>など)を用いることができる。scRNAseqの解析に必要なコードは、scRNA-tools [https://www.scrna-tools.org], Awesome single cell [https://github.com/seandavi/awesome-single-cell], Bioconductor[https://www.bioconductor.org]などで紹介されており、ほとんどがダウンロード可能である。また、最新の情報については、bioRxivなどのプレプリントサーバで公開されていることが多く、scRNAseqのデータ(下記参考)とともに、オープンサイエンス実践の好例となっている。細胞ごとの差次的発現遺伝子の可視化には、ドットプロット(dot plot)、ヴァイオリンプロット(violin plot)、リッジプロット(Ridge plot, joy plot)、UMAPなどの次元圧縮図に重ねるFeatureプロット(feature plot)などが、目的に応じて頻繁に用いられる(図4)。 | ||
[[ファイル:scFig4.jpg|サムネイル|300px|'''図4.scRNAseqデータの可視化の例 '''<br>A. ドットプロット。B.ヴァイオリンプロット。C. リッジプロット。D. | [[ファイル:scFig4.jpg|サムネイル|300px|'''図4.scRNAseqデータの可視化の例 '''<br>A. ドットプロット。B.ヴァイオリンプロット。C. リッジプロット。D. UMAPと重ねたFeatureプロット。網膜の視細胞のデータを用いて執筆者が作製[https://doi.org/10.1101/2020.10.09.333633 | ||
]。]] | ]。]] | ||
91行目: | 88行目: | ||
[[海馬]]<ref><pubmed>29241552</pubmed></ref><ref><pubmed>29912866</pubmed></ref><ref><pubmed>29335606</pubmed></ref><ref><pubmed>31942070</pubmed></ref>では、これまでの研究で記載されてきた神経細胞のタイプの存在が確認され、更に新規のタイプが見つかった。中枢神経系では、その他、[[外側膝状体]]<ref><pubmed>29343640</pubmed></ref>、[[大脳基底核]](足底核)<ref><pubmed>28384468</pubmed></ref> 、[[視床下部]]<ref><pubmed>28166221</pubmed></ref><ref><pubmed>28355573</pubmed></ref> <ref><pubmed>27991900</pubmed></ref><ref><pubmed>30385464</pubmed></ref> <ref><pubmed>31249056</pubmed></ref><ref><pubmed>30858605</pubmed></ref>、[[線条体]]<ref><pubmed>27425622</pubmed></ref><ref><pubmed>30134177</pubmed></ref><ref><pubmed>31875543</pubmed></ref>、[[中脳]]<ref><pubmed>27716510</pubmed></ref><ref><pubmed>29499164</pubmed></ref> <ref><pubmed>30718509</pubmed></ref> 、[[手綱]]<ref><pubmed>29576475</pubmed></ref>、発生中の[[間脳]]<ref><pubmed>30872278</pubmed></ref> 、さらに[[小脳]]<ref><pubmed>30220501</pubmed></ref><ref><pubmed>30735127</pubmed></ref><ref><pubmed>30690467</pubmed></ref>などの結果が得られている。マウスの小脳においては、分子層にこれまでの星状細胞、バスケット細胞というカテゴリーとは違ったギャップジャンクションに特徴を持つ2種類の神経細胞があることが示唆されている[https://doi.org/10.1101/2020.03.04.976407]。 | [[海馬]]<ref><pubmed>29241552</pubmed></ref><ref><pubmed>29912866</pubmed></ref><ref><pubmed>29335606</pubmed></ref><ref><pubmed>31942070</pubmed></ref>では、これまでの研究で記載されてきた神経細胞のタイプの存在が確認され、更に新規のタイプが見つかった。中枢神経系では、その他、[[外側膝状体]]<ref><pubmed>29343640</pubmed></ref>、[[大脳基底核]](足底核)<ref><pubmed>28384468</pubmed></ref> 、[[視床下部]]<ref><pubmed>28166221</pubmed></ref><ref><pubmed>28355573</pubmed></ref> <ref><pubmed>27991900</pubmed></ref><ref><pubmed>30385464</pubmed></ref> <ref><pubmed>31249056</pubmed></ref><ref><pubmed>30858605</pubmed></ref>、[[線条体]]<ref><pubmed>27425622</pubmed></ref><ref><pubmed>30134177</pubmed></ref><ref><pubmed>31875543</pubmed></ref>、[[中脳]]<ref><pubmed>27716510</pubmed></ref><ref><pubmed>29499164</pubmed></ref> <ref><pubmed>30718509</pubmed></ref> 、[[手綱]]<ref><pubmed>29576475</pubmed></ref>、発生中の[[間脳]]<ref><pubmed>30872278</pubmed></ref> 、さらに[[小脳]]<ref><pubmed>30220501</pubmed></ref><ref><pubmed>30735127</pubmed></ref><ref><pubmed>30690467</pubmed></ref>などの結果が得られている。マウスの小脳においては、分子層にこれまでの星状細胞、バスケット細胞というカテゴリーとは違ったギャップジャンクションに特徴を持つ2種類の神経細胞があることが示唆されている[https://doi.org/10.1101/2020.03.04.976407]。 | ||
脳の外部では、[[運動神経]][https://doi.org/10.1101/2020.03.16.992958]、[[感覚神経]]<ref><pubmed>25420068</pubmed></ref><ref><pubmed>26691752</pubmed></ref>、[[らせん神経節]]<ref><pubmed>30078709</pubmed></ref><ref><pubmed>30209249</pubmed></ref> 、[[臭覚神経]]<ref><pubmed>26541607</pubmed></ref> <ref><pubmed>32059767</pubmed></ref>、[[腸神経系]] <ref><pubmed>29483303</pubmed></ref>[https://doi.org/10.1101/2020.03.02.955757] 、[[網膜]]<ref><pubmed>27565351</pubmed></ref><ref><pubmed>29909983</pubmed></ref><ref><pubmed>30018341</pubmed></ref><ref><pubmed>31260032</pubmed></ref><ref><pubmed>31128945</pubmed></ref><ref><pubmed>30712875</pubmed></ref><ref><pubmed>30548510</pubmed></ref><ref><pubmed>31075224</pubmed></ref><ref><pubmed>31399471</pubmed></ref><ref><pubmed>31848347</pubmed></ref><ref><pubmed>31673015</pubmed></ref><ref><pubmed>31653841</pubmed></ref><ref><pubmed>31784286</pubmed></ref>[https://doi.org/10.1101/2020.02.26.966093][https://doi.org/10.1101/779694][https://www.biorxiv.org/content/10.1101/617555][A]でのscRNAseqデータがある。また[[iPS細胞]]や[[ES細胞]]由来の神経組織[[オルガノイド]]に含まれる神経細胞タイプを知る上でも利用されている<ref><pubmed>28094016</pubmed></ref><ref><pubmed>28279351</pubmed></ref><ref><pubmed>31168097</pubmed></ref><ref><pubmed>31996853</pubmed></ref><ref><pubmed>31968264</pubmed></ref><ref><pubmed><ref><pubmed>32221280 | 脳の外部では、[[運動神経]][https://doi.org/10.1101/2020.03.16.992958]、[[感覚神経]]<ref><pubmed>25420068</pubmed></ref><ref><pubmed>26691752</pubmed></ref>、[[らせん神経節]]<ref><pubmed>30078709</pubmed></ref><ref><pubmed>30209249</pubmed></ref> 、[[臭覚神経]]<ref><pubmed>26541607</pubmed></ref> <ref><pubmed>32059767</pubmed></ref>、[[腸神経系]] <ref><pubmed>29483303</pubmed></ref>[https://doi.org/10.1101/2020.03.02.955757] 、[[網膜]]<ref><pubmed>27565351</pubmed></ref><ref><pubmed>29909983</pubmed></ref><ref><pubmed>30018341</pubmed></ref><ref><pubmed>31260032</pubmed></ref><ref><pubmed>31128945</pubmed></ref><ref><pubmed>30712875</pubmed></ref><ref><pubmed>30548510</pubmed></ref><ref><pubmed>31075224</pubmed></ref><ref><pubmed>31399471</pubmed></ref><ref><pubmed>31848347</pubmed></ref><ref><pubmed>31673015</pubmed></ref><ref><pubmed>31653841</pubmed></ref><ref><pubmed>31784286</pubmed></ref>[https://doi.org/10.1101/2020.02.26.966093][https://doi.org/10.1101/779694][https://www.biorxiv.org/content/10.1101/617555][A]でのscRNAseqデータがある。また[[iPS細胞]]や[[ES細胞]]由来の神経組織[[オルガノイド]]に含まれる神経細胞タイプを知る上でも利用されている<ref><pubmed>28094016</pubmed></ref><ref><pubmed>28279351</pubmed></ref><ref><pubmed>31168097</pubmed></ref><ref><pubmed>31996853</pubmed></ref><ref><pubmed>31968264</pubmed></ref><ref><pubmed><ref><pubmed>32221280</pubmed></ref>。 | ||
===神経細胞以外の細胞=== | ===神経細胞以外の細胞=== |