135
回編集
Kentaro Katahira (トーク | 投稿記録) 細 (→適用事例) |
Kentaro Katahira (トーク | 投稿記録) 細 (→モデルの定式化) |
||
44行目: | 44行目: | ||
この式で<math>x</math>を更新していくことによりエビデンスの蓄積過程をシミュレートできる。図2の軌道はこの計算により得られたものである。 | この式で<math>x</math>を更新していくことによりエビデンスの蓄積過程をシミュレートできる。図2の軌道はこの計算により得られたものである。 | ||
標準的なドリフト拡散モデルでは,開始点とドリフト率,および非決定時間は,試行間で変動すると仮定される<ref name=Ratclif1978 />。ドリフト率の試行間変動は,刺激に対する注意の変動などに対応すると考えられ,正規分布に従って変動すると仮定される。この変動を仮定することで,正反応より誤反応の方が反応時間が長くなるということが説明可能となる。これは,ドリフト率が小さくなる試行において,誤反応が起こりやすくなり,かつ反応時間が長くなるためである。開始点の試行間変動は一様分布に従うと仮定され,ある特定の刺激がどの程度呈示されやすいかについての期待が試行間で変動することを表現する。この変動により,誤反応が起こる試行で反応時間が短くなることが説明できる。これは,開始点が誤反応側の境界に寄っているときに,早い時間帯で誤反応が起きやすくなるためである。 | |||
標準的なドリフト拡散モデルのパラメータは,開始点の平均(z),開始点の試行間変動幅 (<math>s_{z}</math>),ドリフト率の平均(<math>v</math>),ドリフト率の標準偏差(<math>\eta</math>), 境界(<math>a</math>),非決定時間の平均(<math>T_{er}</math>),非決定時間の試行間変動(<math>s_{t}</math>)の7つとなる。 | |||
==反応時間分布および選択確率とモデルパラメータの関係== | ==反応時間分布および選択確率とモデルパラメータの関係== |
回編集